A = 2 + 2^2 + 2^3 + 2^4 +...+ 2^2020
Hãy chứng tỏ A chia hết cho 31.
Giúp mình nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
ta có : A=2+2^2+2^3+...+2^2010 chia ra thành các nhóm , mỗi nhóm có 2 số hạng
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A= 2(1+2)+2^3(1+2)+...+2^1009(1+2)
A=2.3+2^3.3+...+2^2009.3
A=3(2+2^3+...+2^2009) chia hết cho 3
phần b tương tự
đây lak toán lớp 6=>ông hok lớp 6 , lừa tui dễ lắm hả???
#G2k6#
\(A=2+2^2+2^3+....+2^{2009}+2^{2010}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}.\left(1+2\right)\)
\(A=2.3+2^3.3.....+2^{2009}.3\)
\(A=3\left(2+2^3+....+2^{2009}\right)⋮3\)
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
số tận cùng lũy thừa 2 theo thứ tự sau: 2 4 8 6. Trong đó lũy thừa lẻ thì tận cùng là 2 8, chẵn thì 4 6
tổng trên có 50 số hạng, trong đó 25 số hạng có lũy thừa lẻ, 25 chẵn
xét số hạng lũy thừa lẻ: 21 23 ... 249
dãy trên có quy luật như sau: bắt đầu là số có tận cùng là 2, số tiếp theo sẽ có tận cùng là 8, tiếp theo là 2, tiếp nữa là 8,... tiếp tục như vậy thì ta suy ra được tận cùng của 247 là 8 thì 249 là 2
vậy số tận cùng của tổng các số hạng lũy thừa lẻ là 2
xét tương tự với dãy lũy thừa chẵn suy ra số tận cùng của tổng này là 4
do đó tổng theo đề bài có số tận cùng là 4+2=6
như vậy làm sao tổng chia hết cho 5 ????????
muốn tổng chia hết 5 thì số hạng nên dừng ở 248 thôi