Cho 2019 số nguyên dương không vượt quá 4036. CMR tồn tại hai số x; y trong 2019 số dã cho thảo mãn x chia hết cho y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)
Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k
Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017
- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)
- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)
\(\Rightarrow2^j-2^i⋮2017\)
\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)
\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)
\(\Rightarrow n=j-i\) thỏa mãn yêu cầu
Gọi tập A là tập thỏa mãn đề bài với A={a1;a2;⋅;a50;a51}, 1≤ai≤100 (i=1,51¯¯¯¯¯¯¯¯¯¯)
Xét tập B={b1;a2;⋅;b50;b51} với bi=101−ai⇒1≤bi≤100 (i=1,51¯¯¯¯¯¯¯¯¯¯)
Ta có : Do tập A có 51 phần tử đều phân biệt nên tập B cũng có 51 phần tử đều phân biệt. Vậy nên tập A và tập B có tổng cộng 102 phần tử mà các phần tử này thuộc [1;100]. Nên theo nguyên lý Dirichlet thì tồn tại ít nhất hai phần tử, mỗi phần tử thuộc mỗi tập trùng nhau.
Ta giả sử đó là : bk=101−ak⇔bk+ak=101
Khi đó ta có điều phải chứng minh !