Thực hiện phép tính
x+1 / x -2 - x-1 / x+2 - 7x+2 / x^2 -4
3x+1 / x^2 - 2x +1 - 1 / x +1 + x+3 / 1 -x^2
1 / x(x + 1) + 1/ (x + 1)(x +2) + ........+ 1/(x + 2015)(x + 2016)
giải chi tiết giùm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
1) \(A=\left[x^4-\left(x-1\right)^2\right]:\left(x^2+x-1\right)-x^2+x=\left[\left(x^2-x+1\right)\left(x^2+x-1\right)\right]:\left(x^2+x-1\right)-x^2+x=x^2-x+1-x^2+x=1\)
2) \(B=\dfrac{\left(x+1\right)\left(x+2\right)+4\left(x-2\right)+2-7x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4}{x^2-4}=1\)
a: \(=\dfrac{x^2-2x+1}{x}:\dfrac{x-1-3x^2+3x-3}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x}\cdot\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{-2x^2+4x-4}\)
\(=\dfrac{\left(x-1\right)^3\cdot\left(x^2-x+1\right)}{-2x\left(x^2-2x+2\right)}\)
b: \(=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]:\dfrac{2}{x^2+1}\)
\(=\dfrac{x^3-3x^2+3x+1+2x^2-4x+1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3+3}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
a: \(=x^3-5x^2-x^2+10x+\dfrac{3}{2}x-15=x^3-6x^2+\dfrac{23}{2}x-15\)
b: \(=5x^3-x^4-10x^2+2x^3+5x-x^2-5+x\)
\(=-x^4+7x^3-11x^2+6x-5\)
c: \(=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1+x}{x+1}-\dfrac{x-1}{x^2+x}\)
\(=\dfrac{x\left(x+1\right)-x+1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+x-x+1}{x^2+x}=\dfrac{x^2+1}{x^2+x}\)
b: ĐKXĐ: \(x\notin\left\{-23;1\right\}\)
\(\dfrac{2x}{x+23}\cdot\dfrac{3x}{x-1}+\dfrac{2x}{x+23}\cdot\dfrac{23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\left(\dfrac{3x}{x-1}+\dfrac{23-2x}{x-1}\right)\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{3x+23-2x}{x-1}\)
\(=\dfrac{2x}{x+23}\cdot\dfrac{x+23}{x-1}=\dfrac{2x}{x-1}\)
Bài 3:
a: Sửa đề: AMCN
Ta có: ABCD là hình bình hành
=>BC=AD(1)
Ta có: M là trung điểm của BC
=>\(BM=MC=\dfrac{BC}{2}\left(2\right)\)
Ta có: N là trung điểm của AD
=>\(NA=ND=\dfrac{AD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra BM=MC=NA=ND
Xét tứ giác AMCN có
MC//AN
MC=AN
Do đó: AMCN là hình bình hành
b: Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
Hình bình hành ABMN có \(AB=BM\left(=\dfrac{BC}{2}\right)\)
nên ABMN là hình thoi
c: Ta có: BM//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
=>\(\widehat{EBM}=60^0\)
Xét ΔBEM có BE=BM(=BA) và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét hình thang ANME có \(\widehat{MEA}=\widehat{EAN}=60^0\)
nên ANME là hình thang cân
=>AM=NE
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
câu b nè
\(\frac{3x+1}{\left(x-1\right)^2}-\frac{1}{x+1}-\frac{x+3}{x^2-1}\)
=\(\frac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}\)
=\(\frac{\left(3x^2+x+3x+1\right)-\left(x^2-2x+1\right)-\left(x^2-x-3+3x\right)}{\left(x-1\right)^2\left(x+1\right)}\)
=\(\frac{3x^2+4x+1-x^2+2x-1-x^2-2x+3}{\left(x-1\right)^2\left(x+1\right)}=\frac{x^2+4x+3}{\left(x+1\right)\left(x-1^2\right)}\)
=\(\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)^2}=\frac{x+3}{\left(x-1\right)^2}\)