K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

Đặt \(19x+93=y^2\)

\(\Leftrightarrow19.\left(x+3\right)=\left(y+6\right).\left(y-6\right)\)

Để cho thỏa mãn đề bài là số chính phương thì điều kiện cần là:

\(\left[{}\begin{matrix}y-6⋮19\\y+6⋮19\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=19t+6\\y=19t-6\end{matrix}\right.\) (t là số nguyên)

\(\Rightarrow\left[{}\begin{matrix}x=19t^2+12t-3\\x=19t^2-12t-3\end{matrix}\right.\)

Vậy \(\forall x=19t^2\pm12t-3\) thì \(19x+93\) là số chính phương.

Chúc bạn học tốt!

26 tháng 9 2018

Đặt 19x+93=y219x+93=y2 (1)

19(x+3)=y2−36⇔19(x+3)=(y−6)(y+6)19(x+3)=y2−36⇔19(x+3)=(y−6)(y+6)

Suy ra: y−6⋮19y−6⋮19 hoặc y+6⋮19y+6⋮19

Suy ra y=19t±6y=19t±6 (2)

(1), (2) suy ra: x=19t2±12t−3x=19t2±12t−3 với mọi t nguyên.

26 tháng 9 2018

\(19x+93=y^2\)

\(\Leftrightarrow19\left(x+3\right)=\left(y+6\right)\left(y-6\right)\)

Để cho thỏa mãn đề bài thì điều kiện cần là:

\(\orbr{\begin{cases}y-6⋮19\\y+6⋮19\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=19t+6\\y=19t-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=19t^2+12t-3\\x=19t^2-12t-3\end{cases}}\)

Điều kiện đủ. Ta thê x ngược lại bài toan thì ta được

\(19\left(19t^2\pm12t-3\right)+93=\left(19t\pm6\right)^2\)

Vậy vơi mọi \(x=19t^2\pm12t-3\)thì thỏa mãn bài toan.

AH
Akai Haruma
Giáo viên
13 tháng 6 2021

Lời giải:

Để $B$ nguyên thì $x^2+19x+93$ là scp.

Đặt $x^2+19x+93=t^2$ với $t\in\mathbb{N}$

$\Leftrightarrow 4x^2+76x+372=4t^2$

$\Leftrightarrow (2x+19)^2+11=(2t)^2$

$\Leftrightarrow 11=(2t-2x-19)(2t+2x+19)$

Đến đây là dạng pt tích cơ bản với $2t-2x-19, 2t+2x+19$ là các số nguyên.