cho a,b thuộc N*
a>2, b>2
chứng tỏ rằng a . b > a + b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a > 2 => ab > 2b ( 1 )
b > 2 => ab > 2a ( 2 )
Cộng (1) và (2) vế theo vế , ta có :
ab + ab > 2b + 2a
2ab > 2 ( a + b )
Chia hai vế cho hai ta được : ab > a +b
=> Điều phải chứng minh .
Em xem lại đề bài và tham khảo bài làm của bạn Nguyễn LInh Châu nhé:
Câu hỏi của Nguyễn Trọng Hoàng Nghĩa - Toán lớp 6 - Học toán với OnlineMath
\(a\)>\(2\)
\(a=2+k\);\(k\)>\(0\)
\(b\)>\(2\)
\(b=2+q\);\(q\)>\(0\)
\(\Rightarrow a+b=2+k+2+q=4+k+q\)
\(a\cdot b=\left(2+k\right)\cdot\left(2+q\right)=4+2k+2q+k\cdot q\)
\(\Rightarrow a+b\)>\(a\cdot b\)\(\left(4=4\right)\);\(k\)<\(2k\);\(q\)<\(2q\);\(k\cdot q\)>\(0\)
Xét hiệu a+b-ab=-(a-1)(b-1)+1
Vì \(\hept{\begin{cases}a>2\\b>a\end{cases}\Rightarrow\hept{\begin{cases}a-1>1\\b-1>1\end{cases}}}\)
=>(a-1)(b-1)>1
=>-(a-1)(b-1)<-1
=>-(a-1)(b-1)+1<0
=>-(a-1)(b-1)<0
=>a+b-ab<0
=>a+b<ab (đpcm)
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b