K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

xét tam giác AOB và tam giác AOC có:

              AO chung

              \(\widehat{AOB}\)=\(\widehat{AOC}\)(gt)

\(\Rightarrow\)tam giác AOB=tam giác AOC(CH-GN)

\(\Rightarrow\)AB=AC đpcm

22 tháng 11 2023

a: Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)'

OC chung

Do đó: ΔOAC=ΔOBC

=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)

\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAC}=\widehat{OBC}\)

nên \(\widehat{xAC}=\widehat{yBC}\)

b: OA=OB

=>O nằm trên đường trung trực của AB(1)

CA=CB

=>C nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OC là đường trung trực của AB

=>OC\(\perp\)AB

=>Oz\(\perp\)AB

18 tháng 8 2020

x O y z A B M

a) xét \(\Delta AOM\)và \(\Delta BOM\)

\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung

=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)

=> AM = BM (hai cạnh tương ứng )

=> M là trung điểm của AB

b) vì AO = BO

=> \(\Delta ABO\)là tam giác cân

vì OM là phân giác của AB 

=> OM vừa là đường cao của tam giác ABC

=> \(OM\perp AB\left(đpcm\right)\)

9 tháng 5 2016

a/Xét tam giác OCA và tam giác OCB:

OC chung

OAC=OBC(90 độ)

Góc AOC=BOC(Phân giác Oz)

=> Tam giác OCA=OCB(ch-gn)

=> CA=CB(cạnh tương ứng)

b/ Xét tam giác CAF và tam giác CBE:

Góc ACF=BCE(đối đỉnh)

Góc CBE=CAF(90 độ)

AC=CB(câu a)

=> Tma giác CAF=tam giác CBE(ch-gn)

=> CF=CE(cạnh tương ứng)

=> Tam giác CEF cân tại C

c/Xét tam giác vuông CBE có:

CE là cạnh huyền.

=> CE>CB Mà CB=CA

=> CE>CA(đpcm)

9 tháng 5 2016

Bạn tự vẽ hình nhaleu

b.

Xét tam giác AFC và tam giác BEC có:

FAC = EBC ( = 90 )

AC = BC (theo câu a)

ACF = BCE (2 góc đối đỉnh)

=> Tam giác AFC = Tam giác BEC (g.c.g)

=> CF = CE (2 cạnh tương ứng)

=> Tam giác CEF cân tại C

c.

Tam giác BCE vuông tại B có:

BC < CE (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà BC = AC (theo câu a)

=> AC < CE

Chúc bạn học tốtok

18 tháng 9 2019