K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

\(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)

\(=3x^3-15x^2+9x+x^2+2x+x+2\)

\(=3x^3-14x^2+13x+2\)

23 tháng 9 2019

a/ \(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)

\(=3x^3-15x^2+9x+\left(x^2+2x+x+2\right)\)

\(=3x^3-15x^2+9x+x^2+2x+x+2\)

\(=3x^3-14x^2+13x+2\)

b/ \(\left(x+2\right)^2+\left(x-3\right)^2-\left(x-1\right)\left(x+1\right)\)

\(=\left(x^2+4x+4\right)+\left(x^2-6x+9\right)-\left(x^2-1\right)\)

\(=x^2+4x+4+x^2-6x+9-x^2+1\)

\(=x^2-2x+14x\)

30 tháng 7 2018

a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)

\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)

\(5x^2-5x^2-5x=3\)

\(-5x=3\)

\(x=\frac{-3}{5}\)

tự ghi dấu suy ra ở đằng trước nhé

30 tháng 7 2018

b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)

nên chỉ cần giải: \(6x^2-10x-3x+21=3\)

\(\Leftrightarrow6x^2-13x+21=3\)

\(\Leftrightarrow6x^2-13x+18=0\)

\(\Rightarrow\)pt vô nghiệm

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

a: =>9x^2+12x+4-9x^2+12x-4=5x+38

=>24x=5x+38

=>19x=38

=>x=2

e: =>x^3+1-2x=x^3-x

=>-2x+1=-x

=>-x=-1

=>x=1

f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1

=>12x-9=3x+1

=>9x=10

=>x=10/9

b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)

=>-3x+3=3x-9

=>-6x=-12

=>x=2

27 tháng 11 2021

\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}3x-15=45\Leftrightarrow3x=60\Leftrightarrow x=20\\35-5x=50\Leftrightarrow5x=-15\Leftrightarrow x=-3\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)+17=6\Leftrightarrow2x+5=-11\Leftrightarrow2x=-16\Leftrightarrow x=-8\\10-2\left(4-3x\right)=-4\Leftrightarrow8-6x=14\Leftrightarrow6x=-6\Leftrightarrow x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}-12+3\left(-x+7\right)=-18\Leftrightarrow-3x+21=-6\Leftrightarrow-3x=-27\Leftrightarrow x=9\\24:\left(3x-2\right)=-3\Leftrightarrow3x-2=-8\Leftrightarrow3x=-6\Leftrightarrow x=-2\end{matrix}\right.\\-45:5\left(-3-2x\right)=3\Leftrightarrow-15-10x=-15\Leftrightarrow10x=0\Leftrightarrow x=0\end{matrix}\right.\)

27 tháng 11 2021

SỬA:

\(\left(2x-5\right)+17=6\Leftrightarrow2x-5=-11\Leftrightarrow2x=-6\Leftrightarrow x=-3\)

16 tháng 12 2021

a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

22 tháng 9 2018

(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)

 20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1

 10x2−19x−33=010x2−19x−33=0

 (10x+11)(x−3)=0

chỉ bt lm con b thoy

..army,,,,,,,,,,

22 tháng 9 2018

a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)

\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\frac{22}{5}\)

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)

\(\Leftrightarrow20x^2-16x-33=10x^2\)

\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)

\(\Leftrightarrow20x^2-16x-33=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)