a) 3x( x2 - 5x + 3 ) + ( x+ 1).(x+2)
b) ( x + 2 )2 + ( x -3 )2 - ( x- 1). ( x + 1)
Khai triển rõ ràng từng bước; ko tóm tắt hoặc ghi mỗi đáp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)
\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)
\(5x^2-5x^2-5x=3\)
\(-5x=3\)
\(x=\frac{-3}{5}\)
tự ghi dấu suy ra ở đằng trước nhé
b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)
nên chỉ cần giải: \(6x^2-10x-3x+21=3\)
\(\Leftrightarrow6x^2-13x+21=3\)
\(\Leftrightarrow6x^2-13x+18=0\)
\(\Rightarrow\)pt vô nghiệm
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
a: =>9x^2+12x+4-9x^2+12x-4=5x+38
=>24x=5x+38
=>19x=38
=>x=2
e: =>x^3+1-2x=x^3-x
=>-2x+1=-x
=>-x=-1
=>x=1
f: =>x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1
=>12x-9=3x+1
=>9x=10
=>x=10/9
b: \(\Leftrightarrow3x^2-12x+12+9x-9=3x^2+3x-9\)
=>-3x+3=3x-9
=>-6x=-12
=>x=2
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}3x-15=45\Leftrightarrow3x=60\Leftrightarrow x=20\\35-5x=50\Leftrightarrow5x=-15\Leftrightarrow x=-3\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)+17=6\Leftrightarrow2x+5=-11\Leftrightarrow2x=-16\Leftrightarrow x=-8\\10-2\left(4-3x\right)=-4\Leftrightarrow8-6x=14\Leftrightarrow6x=-6\Leftrightarrow x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}-12+3\left(-x+7\right)=-18\Leftrightarrow-3x+21=-6\Leftrightarrow-3x=-27\Leftrightarrow x=9\\24:\left(3x-2\right)=-3\Leftrightarrow3x-2=-8\Leftrightarrow3x=-6\Leftrightarrow x=-2\end{matrix}\right.\\-45:5\left(-3-2x\right)=3\Leftrightarrow-15-10x=-15\Leftrightarrow10x=0\Leftrightarrow x=0\end{matrix}\right.\)
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)
20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1
10x2−19x−33=010x2−19x−33=0
(10x+11)(x−3)=0
chỉ bt lm con b thoy
..army,,,,,,,,,,
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2\)
\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)
\(\Leftrightarrow20x^2-16x-33=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
\(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)
\(=3x^3-15x^2+9x+x^2+2x+x+2\)
\(=3x^3-14x^2+13x+2\)
a/ \(3x\left(x^2-5x+3\right)+\left(x+1\right)\left(x+2\right)\)
\(=3x^3-15x^2+9x+\left(x^2+2x+x+2\right)\)
\(=3x^3-15x^2+9x+x^2+2x+x+2\)
\(=3x^3-14x^2+13x+2\)
b/ \(\left(x+2\right)^2+\left(x-3\right)^2-\left(x-1\right)\left(x+1\right)\)
\(=\left(x^2+4x+4\right)+\left(x^2-6x+9\right)-\left(x^2-1\right)\)
\(=x^2+4x+4+x^2-6x+9-x^2+1\)
\(=x^2-2x+14x\)