Cho tam giác ABC cân tại A, BE là đường cao. Lấy M thuộc cạnh BC. Hạ MN,MK vuông góc với AB,AC. Chứng minh MN+MK=BE
Giúp mình với, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của bn bị thiếu à?
Cho tam giác ABC vuông tai A (AB ?
a) vì M là tđ AB -> AM=1/2AB=5cm
N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H
có góc AMH + góc BMK ( đối đỉnh )
AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)
d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)
tam giác ABC có góc A vuông
ta có : BC2 = AB2 +AC2 ( định lý pytago )
thay BC2 = 102 + 242
=> BC=26 cm
ta lại có : M là trung điểm của AB => AM=1/2AB=1/2 . 10 =5 cm
tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm
tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )
thay MN2 = 52 + 122
=> MN = 13 cm
Vậy MN = 13 cm
a: ΔBAM cân tại B
mà BE là đường cao
nên BE là phân giác của góc ABM
b: Xét ΔMBA có
AH,BE là đừog cao
AH căt BE tại K
=>K là trực tâm
=>MK vuông gócAB
=>MK//AC
Gọi G là giao điểm của BE và AC (*)
Ta có: tam giác ABC vuông tại A (gt) =>AC vuông góc với AB tại A
=> GC vuông góc với AB tại A
=> GC là đường cao thứ nhất của tam giác GBC (1)
Ta có: BE vuông góc với CD tại E => BE vuông góc EC tại E
=> CE là đường cao thứ 2 của tam giác GBC (2)
Ta có BA cắt CE tại D (3)
Từ (1), (2), (3) ta suy ra D là trực tâm của tam giác GBC
=> GD thuộc đường cao thứ 3 của tam giác GBC.
=> GD vuông góc với BC
Ta có AH vuông góc với BC tại H (vì AH là đường cao của tam giác ABC) ; DF song song với AH.
=> DF vuông góc với BC tại F
=> G,D,F thẳng hàng
=> DF đi qua G (**)
Từ (*), (**) ta suy ra: CA, BE, DF đồng quy tại G (đpcm)