K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

các bạn giải hộ mình với

17 tháng 7 2015

Trên cạnh BC lấy điểm D sao cho CD=CA.Ta có 

Theo đề bài ta có 
Dễ dàng chứng minh tam giác ABC đồng dạng tam giác DBA

Đặ BC=a ; AB=c ;Ac=b 

Do các cạnh của tam giác ABC là ba STN liên tiếp nên a>b nên a-b=1 hoặc a-b=2
Sau đó giải hai trường hợp đó ra nghiệm thích hợp AB=2 , AC= 3 ; BC=4
b) Dễ rồi : kẽ đường cao AH xong rồi tính nhé

 

 

 

            **** hộ mình

 

4 tháng 7 2021

đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a 
Xét 3 trường hợp 
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng) 
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) 
HB = MH - BM => HB = a - (x+1)/2 => HB^2 = (a - (x+1)/2)^2 
HC = HB + BC => HC = a - x/2 + x => HC^2 = (a + (x+1)/2)^2 
Ta có AH^2 = AC^2 - HC^2 
AH^2 = AB^2 - HB^2 
=> AC^2 - HC^2 = AB^2 - HB^2 
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2 
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4 
<=> 2ax + 2a - 4x - 4 = 0 
<=> 2a(x+1) - 4(x+1) = 0 
<=> (x + 1).2(a - 2) = 0 
<=> x = -1 hoặc a = 2 
hay AB = -1 hoặc HM = 2 (đpcm) 

8 tháng 12 2015

Gọi 3 cạnh tam giác vuông là (n-1), n và (n+1), ta có:

(n-1)2 + n2 = (n+1)2

n2 -2n + 1 + n2 = n2 + 2n + 1

n2 - 4n =0

n(n-4) = 0

n = 0 (loại) hoặc n=4

Vậy 3 cạnh là: 3, 4, 5