Chứng minh rằng : \(27^{20}+3^{61}+9^{31}\) chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\cdot\left(1+3+3^2\right)\)
\(=3^{60}\cdot13⋮13\)
Vậy....
a)
\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)
Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)
Vậy...
b)
\(81^7-27^9-9^{13}\\
=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\
=3^{28}-3^{27}-3^{26}\\
=3^{24}.\left(3^4-3^3-3^2\right)\\
=3^{24}.\left(81-27-9\right)\\
=3^{24}.45\)
Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)
Vậy...
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left[\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\right]\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^2-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
\(\RightarrowĐPCM\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^3-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
Vậy (2721 - 931 - 360 ) \(⋮\)17
\(27^{10}+3^{29}+9^{14}=3^{30}+3^{29}+3^{28}=3^{28}\cdot\left(3^2+3+1\right)=3^{28}\cdot13\)chia hết cho 13
\(27^{10}+3^{29}+9^{14}\)
\(=\left(3^3\right)^{10}+3^{29}+\left(3^2\right)^{14}\)
\(=3^{30}+3^{29}+3^{28}\)
\(=3^{28}.\left(3^2+3+1\right)\)
\(=3^{28}.\left(9+3+1\right)\)
\(=3^{28}.13\)chia hết cho 13
=> đpcm
Ủng hộ mk nha ^_-
Ta có:817-279-913
=(34)7-(33)9-(32)13
=328-327-326=326.(32-3-1)=326.5=322.34.5=322.405 luôn chia hết cho 405
=>đpcm
7^6+7^5-7^4 = 7^4*(7^2+7-1) = 7^4*55
mình học lớp 5 mong bạn thông cảm và
a, 81^7-27^9-9^13
=(3^4)^7-(3^3)^9-(3^2)^13
=3^28-3^27-3^26
=3^26(3^2-3-1)
=3^26.5=3^13.3^2.5=45.3^13 chia hết cho 45
Ta có: \(27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}.\left(1+3+3^2\right)\)
\(=3^{60}.13\)
Vì \(13⋮13\) nên \(3^{60}.13⋮13.\)
\(\Rightarrow27^{20}+3^{61}+9^{31}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!