Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
\(\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)
D=(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)
=6x2+48x-5x-40-(6x2+9x-2x-3)-36x+27
=6x2+48x-5x-40-6x2-9x+2x+3-36x+27
=-10
Vậy giá trị của biểu thức D ko phụ thuộc vào biến
D=(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)
\(\Rightarrow D=\left(6x^2+48x-5x-40\right)-\left(6x^2+9x-2x-3\right)+\left(-36x+27\right)\)
\(\Rightarrow D=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)
\(\Rightarrow D=\left(6x^2-6x^2\right)+\left(48x-5x-9x-36x+2x\right)-40+3+27\)
\(\Rightarrow D=-40+3+27=-10\)
Vậy biểu thức D không phụ thuộc vào giá trị của biến x.(đpcm)
Tick cho mình với
`@` `\text {Ans}`
`\downarrow`
`2,`
`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`
`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`
`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`
`= 0 + 0 + 5`
`= 5`
Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.
Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5
=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )
A = ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( đã sửa )
= x3 - 53 - x3 + 2
= x3 - 125 - x3 + 2
= -123 ( không phụ thuộc vào biến )
=> đpcm
B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5
= ( 2x )3 + 33 - 8x3 - 16x + 16x + 5
= 8x3 + 27 - 8x3 - 16x + 16x + 5
= 27 + 5 = 32 ( không phụ thuộc vào biến )
=> đpcm
\(A=\left(x-5\right)\left(x^2+5x+25\right)-x^3+2\)
\(=x^3-125-x^3+2\)
\(=-123\left(đpcm\right)\)
\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2+2\right)+16x+5\)
\(=8x^3+27-8x^3-16x+16x+5\)
\(=32\left(đpcm\right)\)
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=\left(2x+3\right)\left[\left(2x\right)^2-2x.3+3^2\right]-\left(8x^3+1\right)+3\)
\(=\left(2x\right)^3+3^3-\left[\left(2x\right)^3+1^3\right]+3\)
\(=3\)
Vậy biểu thức không phụ thuộc vào biến x.
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
\(=29\)
Vậy biểu thức trên ko phụ thuộc biến x
Lời giải:
a. $A=(x-1)^3-(x+1)^3+6(x+1)(x-1)$
$=(x^3-3x^2+3x-1)-(x^3+3x^2+3x+1)+6(x^2-1)$
$=-6x^2-2+6x^2-6=-8$ không phụ thuộc vào giá trị của biến $x$.
b.
$B=(2x+3)(4x^2-6x+9)-2(4x^3-1)=(2x)^3+(3^3)-8x^3+2$
$=8x^3+27-8x^3+2=29$ không phụ thuộc vào giá trị của biến $x$.
A = (2x+3)(4x2−6x+9)−2(4x3−1)−36
=8x3-12x2+18x+12x2-18x+27-8x3+2-36
=-7
Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-36\)
\(=8x^3+27-8x^3+2-36\)
\(=-7\)
(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)=6x2+43x−40−6x2−7x+3−36x+27=−10