tìm số tự nhiên a nhỏ nhất sao cho khi a chia cho 3;5;7 thì được số dư lần lượt là :2;3;4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a chia 3/5 thuộc N=)3a chia hết cho 5=)30a chia hết cho 50
a chia 10/7 thuộc N=)10a chia hết cho 7=)30a chia hết cho 21
=)30a chia hết cho BCNN(50,21)
=)30a chia hết cho 1050
=)a chia hết cho 350
mà a nhỏ nhất =)a=350
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
- theo bài ra , ta có :
a : 3 dư 2 ; a : 5 dư 4 ; a : 7 dư 6 và a là số tự nhiên nhỏ nhất .
=> a + 1 : 3 ; a + 1 : 5 ; a + 1 : 7 và a là số tự nhiên nhỏ nhất .
=> a + 1 ∈BCNN(3;5;7)
\(a-2⋮3\Rightarrow a-2+3=a+1⋮3\\ a-4⋮5\Rightarrow a-4+5=a+1⋮5\\ a-6⋮7\Rightarrow a-6+7=a+1⋮7\\ \Rightarrow a+1=BCNN\left(3,5,7\right)=105\left(a\text{ nhỏ nhất}\right)\\ \Rightarrow a=104\)
a = 3m+2 ( m thuộc N ) => 2a= 6m+4, chia 3 dư 1
a= 5n+3 ( n thuộc N ) => 2a = 10n+6, chia 5 dư 1
a= 7p+4 ( p thuộc N ) => 2a = 14p+8, chia 7 dư 1
Do đó 2a - 1 thuộc BC ( 3,5,7 )
Để a nhỏ nhất thì 2a-1 là BCNN( 3,5,7 )
BCNN(3,5,7) = 105
Mà 2a-1 = BCNN(3,5,7)
=> 2a-1 = 105
2a = 105+1
2a=106
a=106:2
a=53
Vậy a = 53
a chia 3, 5, 7 lần lượt dư 2, 4, 6 => a + 1 chia hết 3, 5, 7.
Mà a nhỏ nhất => a + 1 nhỏ nhất.
Suy ra a + 1 = BCNN(3,5,7) = 105
Vậy a = 104
Câu trả lời được Online Math lựa chọn