chung minh rang : \(A=n^2+4n+5\)không chia hết cho 8 với n lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
Giải:
Đặt \(n=2k+1\) (\(n\) lẻ) ta có:
\(n^2+4n+5=\left(2k+1\right)^2+4\left(2k+1\right)+5=\left(4k^2+4k+1\right)+\left(8k+4\right)+5\)
\(=\left(4k^2+4k\right)+\left(8k+8\right)+2=4k\left(k+1\right)+8\left(k+1\right)+2\)
Vì \(k\left(k+1\right)⋮2\Leftrightarrow\hept{\begin{cases}4k\left(k+1\right)⋮8\\8\left(k+1\right)⋮8\end{cases}}\) Mà \(2\) không chia hết cho \(8\)
Nên \(n^2+4n+5\) không chia hết cho \(8\) với mọi \(n\) là số lẻ (Đpcm)
B1 a, Có n lẻ nên n = 2k+1(k E N)
Khi đó: n^2 + 7 = (2k+1)^2 +7
= 4k^2 + 4k + 8
= 4k(k+1) +8
Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2
=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8
Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120.
=> \(n^5-5n^3+4n⋮120\)
Vậy ...
a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
\(= 3(x - 1)x(x + 1) +9x\)
Vì \((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9
\(\RightarrowĐPCM\)
Sua de 1 chuc A=n2+4a-5 khong chia het cho 8 voi moi n le nhe !
Với n=0 =>A(n)=0 chia hết cho 8 với n lẻ
Giả sử A(n) chia hết cho 8 với n=2k+1 nghĩa là:
A(k)=(2k+1)^2+4*(2k+1)-5 chia hết cho 8
Ta cần chứng minh A(n) chia hết cho 8 với n=2k+3
Ta có: A(2k+3)=(2k+3)^2+4(2k+3)-5
= 4k^2+12k+9+8k+12-5
= (4k^2+4k+1)+(8k+4)-5+8k+16
= (2k+1)^2+4(2k+1)-5+8(k+2)
= A(2k+1)+8(k+2) chia hết cho 8
Vậy theo quy tắc quy nạp thì :
A(n)=n^2+4n-5 chia hết cho 8 với n lẻ