Cho tam giác ABC cân tại A ,2 trung tuyến BD,EC cắt nhau tại G; Điểm M,N lần lượt là trung điểm của GB,GC
a)CMR MNCB là hình thang
b)CMR MN //DE,EM//DM
c)CMR EM vuông góc MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
a: Xét ΔEBC và ΔDCB co
EB=DC
góc EBC=góc DCB
CB chung
=>ΔEBC=ΔDCB
=>EC=BD; góc GBC=góc GCB
=>GB=GC
=>GE=GD
=>ΔGED cân tại G
b: BD+CE=3/2(BG+CG)>3/2BC
`a)`
Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB);AB=AC`
Có `BD` là trung tuyến `=>D` là tđ `AC=>AD=DC`
`CE` là trung tuyeens`=>E` là tđ `AB=>AE=BE`
mà `AB=AC`
nên `CD=BE`
Xét `Delta EBC` và `Delta DCB` có :
`{:(BE=CD(cmt)),(hat(EBC)=hat(DCB)(hat(ABC)=hat(ACB))),(BC-chung):}}`
`=>Delta EBC=Delta DCB(c.g.c)`
`=>CE=BD` ( 2 cạnh t/ứng )
Có đường trung tuyến `BD` và `CE` cắt nhau tại `G`
`=>G` là trọng tâm `=>BG=2/3 BD;CG=2/3 CE`
mà `BD=CE(cmt)`
nên `BG=CG(đpcm)`
Xét ΔABD và ΔACE có
AB=AC
góc A chung
AD=AE
=>ΔABD=ΔACE
=>BD=CE
Xet ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>BG=2/3BD; CG=2/3CE
mà BD=CE
nên BG=CG
Bắt chước Geogebra để vẽ hình trên olm:
a) Dễ thấy MN là đường trung bình tam giác GBC nên MN // BC. Do đó tứ giác MNCB là hình thang.(mình nghĩ đề là chứng minh MNCB là hình thang cân chứ? Cho nó phức tạp xíu:D)
b) Từ đề bài ta có ngay DE là đường trung bình tam giác ABC nên DE // BC. Kết hợp MN // BC suy ra MN // DE.
*Chứng minh EM // DM: Mình thấy nó hơi sai sai ở cái đề.
c) Đề có sai hem?