Chứng minh :
(x+y+z)^3-(x+y-z)^3-(x-y+z)^3-(-x+y+z)^3=24xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\left\{\begin{matrix} -x+y+z=a\\ x-y+z=b\\ x+y-z=c\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} z=\frac{a+b}{2}\\ x=\frac{b+c}{2}\\ y=\frac{c+a}{2}\\ \end{matrix}\right.\)
Khi đó:
\((x+y+z)^3=(\frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2})^3=(a+b+c)^3\) (1)
Và:
\((-x+y+z)^3+(x-y+z)^3+(x+y-z)^3+24xyz\)
\(=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3\) theo hằng đẳng thức đáng nhớ (2)
Từ (1);(2) suy ra đpcm.
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
Có: (x+y+z)3 = (x+y)3 + z3 + 3z(x+y)(x+y+z)
= x3 + y3 + z3 + 3xy(x+y) + 3z(x+y)(x+y+z)
= x3 + y3 + z3 + 3(x+y)[xy+z(x+y+z)]
= x3 + y3 + z3 + 3(x+y)(xy+xz+yz+z2)
= x3 + y3 + z3 + 3(x+y)[x(y+z)+z(z+y)]
= x3 + y3 + z3 + 3(x+y)(y+z)(x+z) (đpcm)
\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)
BĐT cần chứng minh trở thành:
\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)
Thật vậy, ta có:
\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)
Áp dụng AM-GM:
\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)
Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm
cho x,y,z nguyên và (x-y)*(y-z)*(z-x)=m. Chứng minh rằng: (x-y)^3 + (y-z)^3 + (z-x)^3 chia hết cho m
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.
a, x^4 - 5x^2 + 4
= x^4 - 4x^2- x+ 4
= x^2 . (x^2 - 4) - (x^2 - 4)
= (x^2 - 4) . (x^2 - 1)
= (x - 2) . (x + 2) . (x - 1) . (x + 1)
x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]
2 cái bằng nhau