Nếu x < -3 thì \(3\left(x-1\right)-2|x+3|\)= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x-1\rightarrow0\) khi \(x\rightarrow1\) nên \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\) hữu hạn khi và chỉ khi \(f\left(x\right)-5=0\) có nghiệm \(x=1\)
\(\Leftrightarrow f\left(1\right)-5=0\Rightarrow f\left(1\right)=5\)
Tương tự ta có \(g\left(1\right)=1\)
Do đó: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{f\left(x\right).g\left(x\right)+4}-3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right).g\left(x\right)-5}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-5\right].g\left(x\right)+5\left[g\left(x\right)-1\right]}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\left(2.1+5.3\right).\dfrac{1}{\sqrt{5.1+4}+3}=\dfrac{17}{6}\)
Em làm như này được ko anh?
Tìm lim f(x) theo lim của x, rồi thế vô biểu thức, ví dụ như: \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left[2\left(x-1\right)+5\right]\)
Vậy là mình có thể chuyển từ tìm lim f(x) sang lim của hàm số chứa x
2x2+x(8x-x)=(x+1)(x-3)+6
<=>2x2+8x-x2=x2-3x+x-3+6
<=>x2+8x=x2-2x+3
<=>x2+8x-x2+2x=3
<=>10x=3
<=>x=3/10
Dưới lớp 10 ko có cách nào để giải dạng này (hoặc nếu sử dụng chia trường hợp để giải thì sẽ mất vài trang giấy, không ai làm thế hết)
Trả lời:
\(B=\left(x-3\right).\left(x+3\right).\left(x^2+9\right)-\left(x^2+2\right).\left(x^2-2\right)\)
\(B=\left(x^2-9\right).\left(x^2+9\right)-\left(x^4-4\right)\)
\(B=\left(x^4-81\right)-\left(x^4-4\right)\)
\(B=x^4-81-x^4+4\)
\(B=-77\)
Sửa đề: Sửa x+y thành x-y đi nhé ở giả thiết âý
Lời giải+làm rõ cái gợi ý
Ta có mệnh đề \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\), áo dụng cái này với \(a=\left(y-z\right)\sqrt[3]{1-x^3};b=\left(z-x\right)\sqrt[3]{1-y^3};c=\left(x-y\right)\sqrt{1-z^3}\) ta được:
\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+....=...\) (như trên)
Suy ra \(\left(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3\right)-\left(\left(xy-xz\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3\right)\)
\(=3\left(x-y\right)\left(y-z\right)\left(x+z\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\left(1\right)\)
Ta lại có:\(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(2\right)\)
Và \(\left(xy-zx\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3=3xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(3\right)\)
Thay (2),(3) vào (1) ta có:
\(3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-xyz\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)
Vì x,y,z đôi một khác nhau nên
\(\left(1-xyz\right)=\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)
\(\Leftrightarrow\left(1-xyz\right)^3=\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
P.s:mệt quá rồi, vừa làm vừa ngáp có gì mai thanh toán
Bạn lập phương 2 vế của phương trình =0 đó rồi nhân tung ra (vất vả) rồi kết hợp với gợi ý của thầy cậu là ok