áp dụng phân tích đa thức thành nhân tử để CM chia hết
a7-a chia hết cho 7
a3+3a2+2a chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a(a-1) chia hêt 2
b) a(a^2-1)=(a-1)a(a+1) chia hết 3
c) a(a^4-1)=a(a^2-1)(a^2+1)=a(a^2-1)(a^2-4+5)=(a-2)(a-1)a(a+1)(a+2)+5a(a^-1) chia hết 5
đây là định lí nhỏ Phéc-ma a^n-a chia hết n
a) a2-a=a(a-1)
Vì a,a-1 là 2 số nguyên liên tiếp nên sẽ chia hết cho 2
=>đpcm
b)a3-a=a(a2-1)=a(a-1)(a+1)
Vì a,a-1,a+1 là 3 số nguyên liên tiếp nên sẽ chia hết cho 3
=>đpcm
c)a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)
Ta có
a,a-1,a+1,a-2,a+2 là 5 số nguyên liên tiếp nên chia hết cho 5
5a(a-1)(a+1) chia hết cho 5( 5 chia hết cho 5)
=>đpcm
\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)
\(=a\left(a^2+2a+a+2\right)\)
\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số liên tiếp chia hết cho 3 và có 1 số chẵn và (2,3) = 1 nên \(a^3+3a^2+2a⋮6\left(đpcm\right)\)