so sánh \(\frac{1}{7}\sqrt{51}\)với \(\frac{1}{9}\sqrt{150}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{7}\)\(\sqrt{51}\)=\(\frac{\sqrt{51}}{7}\)=\(\sqrt{\frac{51}{49}}\)=\(\sqrt{\frac{4131}{3969}}\)
\(\frac{1}{9}\)\(\sqrt{150}\)=\(\frac{\sqrt{150}}{9}\)=\(\sqrt{\frac{150}{81}}\)=\(\sqrt{\frac{7350}{3969}}\)
Mà \(\sqrt{\frac{4131}{3969}}\)<\(\sqrt{\frac{7350}{3969}}\) ( Vì 4131<7350 )
⇒ĐPCM
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có: 3√3=√32.3=√9.3=√2733=32.3=9.3=27
Vì √27>√1227>12 nên 3√3>√1233>12
Vậy 3√3>√1233>12.
b) Ta có: 3√5=√32.5=√4535=32.5=45
7=√72=√497=72=49
Vì √49>√4549>45 nên 7>3√57>35
Vậy 7>3√57>35.
c) Ta có: 13√51=√(13)2.51=√5191351=(13)2.51=519
15√150=√(15)2.150=√15025=√6=√6.99=√54915150=(15)2.150=15025=6=6.99=549
Vì √549>√519549>519 nên 13√51<15√1501351<15150
Vậy 13√51<15√1501351<15150.
d) Ta có: 12√6=√(12)2.6=√64126=(12)2.6=64
=√32=√3.12=√3.√12=32=3.12=3.12
Vì √3.√12<6√123.12<612 nên 12.√6<6√1212.6<612
Vậy 12√6<6√12126<612.
\(\frac{\sqrt{51}}{7}< \frac{\sqrt{64}}{7}=\frac{8}{7}< \frac{4}{3}=\frac{\sqrt{144}}{9}< \frac{\sqrt{150}}{9}\)
Nên \(\frac{\sqrt{51}}{7}< \frac{\sqrt{150}}{9}\)
a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)
\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)
1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)
b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)
=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)
b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)
a) Vì \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)
\(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)
\(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)
b) Vì \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)
\(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)
\(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{9}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{10}}=\frac{1}{\sqrt{10}}\)
=>M>10
\(\frac{1}{7}\sqrt{51}< \frac{1}{7}\sqrt{64}=\frac{1}{7}.8=\frac{8}{7}\)
\(\frac{1}{9}\sqrt{150}>\frac{1}{9}\sqrt{144}=\frac{1}{9}.12=\frac{4}{3}\)
\(1+\frac{1}{3}>1+\frac{1}{7}\Rightarrow\frac{4}{3}>\frac{8}{7}\)
Do đó: \(\frac{1}{7}\sqrt{51}< \frac{1}{9}\sqrt{150}\)