K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

A B C E D G F I H O

a) Xét \(\Delta\)IFG và \(\Delta\)HBG có:

GF=GB

IF=HB                                => \(\Delta\)IFG=\(\Delta\)HBG (c.g.c)  (1)

^GFI=^GBH=900

Ta thấy: BH+HC=BC=GF. Mà BH=DE hay BH=AC

=> AC+HC=GF <=> AH=GF

=> \(\Delta\)EAH=\(\Delta\)IFG (c.g.c) (2)

Tương tự: AC+HC=BH+HC => AH=BG => \(\Delta\)EAH=\(\Delta\)HBG (c.g.c) (3)

Lại có: BC=CF => BH+HC=CD+DF. Mà BH=DE=CD

=> HC=DF =>  HC+AC=DF+IF (Vì AC=DE=IF)

=> \(\Delta\)EAH=\(\Delta\)EDI (c.g.c) (4)

Từ (1), (2), (3) và (4) => \(\Delta\)EDI=\(\Delta\)EAH=\(\Delta\)HBG=\(\Delta\)IFG (đpcm)

b) Ta có:

\(\Delta\)EDI=\(\Delta\)EAH=\(\Delta\)HBG=\(\Delta\)IFG (cmt)

=> EI=EH=HG=IG (Các cạnh tương ứng) => Tứ giác EIGH là hình thoi (5)

Mà \(\Delta\)EAH=\(\Delta\)HBG => ^EHA=^HGB (2 góc tương ứng)

Thấy ^HGB+^BHG=900. => ^EHA+^BHG=900 => ^GHE=900 (6)

Từ (5) và (6) => Tứ giác EIGH là hình vuông (đpcm).

c) Tứ giác EIGH là hình vuông và O là giao 2 đường chéo => OE=OH.

Ta có: ^OEA=^AEH+^OEH

^OHB=^OHG+^BHG.

Mà ^OEH=^OHG=450, ^AEH=^BHG (cmt) => ^OEA=^OHB.

Xét \(\Delta\)OEA và \(\Delta\)OHB:

OE=OH

^OEA=^OHB              => \(\Delta\)OEA=\(\Delta\)OHB (c.g.c)

EA=HB (EA=DE)

=> OA=OB (2 cạnh tương ứng) => Điểm O thuộc đường trung trực của AB (7)

^EOA=^HOB

 Lại có: ^EOH=^EOA+^AOH=900 => ^HOB+^AOH=900 => ^AOB=900

Mà OA=OB =>Tam giác AOB vuông cân tại O

=> Khoảng cách từ O tới AB bằng 1/2 đoạn AB (8)

Từ (7) và (8) => O là điểm cố định trên trung trực của AB vì AB cố định và O luôn cách AB 1 khoảng bằng 1/2 AB.

14 tháng 11 2017

Từ một điểm M nằm ngoài đường tròn(O) ta vẽ hai tiếp tuyến MA,MB với đường tròn . Trên tia OB lấy điểm C sao cho BC = BO . Chứng minh góc BMC = 1/2 góc BMA

13 tháng 11 2017
Help me
28 tháng 2 2020

a) Xét ΔIFG và Δ HBG có:
GF=GB
IF=HB                               

góc GFI= góc GBH=90 độ 

=>  ΔIFG=Δ HBG (c.g.c)  (1)

Ta thấy: BH+HC=BC=GF.

Mà BH=DE hay BH=AC
=> AC+HC=GF <=> AH=GF
=> ΔEAH=ΔIFG (c.g.c) (2)
Tương tự: AC+HC=BH+HC => AH=BG => ΔEAH=Δ HBG (c.g.c) (3)
Lại có: BC=CF => BH+HC=CD+DF. Mà BH=DE=CD
=> HC=DF =>  HC+AC=DF+IF (Vì AC=DE=IF)
=> ΔEAH=ΔEDI (c.g.c) (4)
Từ (1), (2), (3) và (4) => ΔEDI=ΔEAH=Δ HBG=ΔIFG (đpcm)
b) Ta có:
ΔEDI=ΔEAH=Δ HBG=ΔIFG (cmt)
=> EI=EH=HG=IG (Các cạnh tương ứng)

=> Tứ giác EIGH là hình thoi (5)
Mà ΔEAH=Δ HBG

=> góc EHA= góc HGB (2 góc tương ứng)
Ta Thấy góc HGB + góc BHG=90 độ
. => ^EHA+^BHG=90 độ
 => góc GHE=90độ (6)
Từ (5) và (6) => Tứ giác EIGH là hình vuông (đpcm).
c) Tứ giác EIGH là hình vuông và O là giao 2 đường chéo

=> OE=OH.
Ta có: góc OEA=góc AEH+ góc OEH
góc OHB= góc OHG + gócBHG.
Mà góc OEH = gócOHG=45 độ 
, góc AEH = gócBHG (cmt)

=> góc OEA =góc OHB.

Xét ΔOEA và ΔOHB:
OE=OH
góc OEA =góc OHB            
EA=HB (EA=DE)
=> tam giác OEA = tam giác OHB

=> OA=OB (2 cạnh tương ứng)

=> Điểm O thuộc đường trung trực của AB (*)
Ta có : góc EOA=góc HOB
 Lại có: góc EOH= góc EOA +  góc AOH=90 độ
 => góc HOB + góc AOH=90 độ 
 => góc AOB=90độ 
Mà OA=OB =>Tam giác AOB vuông cân tại O
=> Khoảng cách từ O tới AB bằng 1/2 đoạn AB (**)
Từ (*) và (**) => O là điểm cố định trên trung trực của AB vì AB cố định và O luôn cách AB 1 khoảng bằng 1/2 AB

5 tháng 9 2017

Bài 1:

Gọi N là trung điểm của HC

Xét tam giác ABC cân tại A ta có:

AM là đường trung tuyến (gt)

=> AM là đường cao của tam giác ABC

=> AM _|_ BC tại M

Xét tam giác HMC ta có:

O là trung điểm của Mh (gt)

N là trung điểm của HC ( cách vẽ)

=> ON là đường trung bình của tam giác HMC

=> ON // MC

Mà AM _|_ MC tại M (cmt)

Nên NO _|_ AM 

Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)

=> O là trực tâm của tam giác AMN

=> AO _|_ MN

Xét tam giác BHC ta có:

M là trung điểm của BC (gt)

N là trung điểm của HC (cách vẽ)

=> MN là đường trung bình của tam giác BHC

=> MN // BH

Mà AO _|_ MN (cmt)

Nên AO _|_ BH (đpcm)

29 tháng 4 2018

LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws

a: Sửa đề:I là chân đường cao kẻ từ O xuống AB. Chứng minh H,O,K thẳng hàng

Xét tứ giác AHOI có

\(\widehat{AHO}+\widehat{AIO}=180^0\)

=>AHOI là tứ giác nội tiếp

=>\(\widehat{HOI}+\widehat{HAI}=180^0\)

Xét tứ giác OIBK có \(\widehat{OIB}+\widehat{OKB}=180^0\)

=>OIBK là tứ giác nội tiếp

=>\(\widehat{IOK}+\widehat{IBK}=180^0\)

AH//BK

=>\(\widehat{HAI}+\widehat{KBI}=180^0\)

\(\widehat{HOI}+\widehat{KOI}\)

\(=180^0-\widehat{HAI}+180^0-\widehat{KBA}\)

\(=360^0-180^0=180^0\)

=>H,O,K thẳng hàng

b: Xét ΔAHO vuông tại H và ΔAIO vuông tại I có

AO chung

\(\widehat{HAO}=\widehat{IAO}\)

Do đó: ΔAHO=ΔAIO

=>AH=AI

Xét ΔOIB vuông tại I và ΔOKB vuông tại K có

BO chung

\(\widehat{IBO}=\widehat{KBO}\)

Do đó: ΔOIB=ΔOKB

=>BI=BK

AH+BK=AI+IB=AB không đổi

\(\widehat{OBA}+\widehat{OAB}=\dfrac{1}{2}\left(\widehat{HAB}+\widehat{KBA}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔOAB vuông tại O

=>ΔOAB nội tiếp đường tròn đường kính BA

\(\widehat{HIK}=\widehat{HIO}+\widehat{KIO}\)

\(=\widehat{HAO}+\widehat{OBK}\)

\(=\widehat{OAB}+\widehat{OBA}=90^0\)

=>ΔHIK vuông tại I

=>ΔHIK nội tiếp đường tròn đường kính HK

A B M X Y C D Drawed by Hoi con bo

Chắc mk nghĩ thế này là ổn lắm rùi

Hội con 🐄 chúc bạn học tốt!!! 

4 tháng 10 2017

nâng cao phát triẻn toán 8 tâọ 1 bài 56,