Cho tam giác ABC. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh tam giác AMB = tam giác CMD.
b) Từ A và C vẽ các đường vuông góc với BD, cắt BD lần lượt tại K và H. Chứng minh AK = CH.
c) Gọi E và F lần lượt là trung điểm của BC và AD. Chứng minh 3 điểm E, M, F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AMB và tam giác CMD có
AM = MC (gt)
góc AMB = góc CMD ( đối đỉnh )
BM = MD (gt)
do đó tam giác AMB = tam giác CMD (c.g.c)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>DC\(\perp\)AC
mà AC\(\perp\)AB
nên AB//DC
c: ΔMAB=ΔMCD
=>AB=CD
Xét ΔKAB và ΔKEC có
KA=KE
\(\widehat{AKB}=\widehat{EKC}\)
KB=KC
Do đó: ΔKAB=ΔKEC
=>AB=EC
ΔKAB=ΔKEC
=>\(\widehat{KAB}=\widehat{KEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
AB//EC
AB//CD
CD,EC có điểm chung là C
Do đó: E,C,D thẳng hàng
AB=EC
AB=CD
Do đó: EC=CD
Ta có: E,C,D thẳng hàng
EC=CD
Do đó: C là trung điểm của ED
FE là nét đứt nha.
a) Có M là trung điểm của AC (gt) => AM = CM = 1/2 AC
Xét ΔAMB và ΔCMD có:
AM = CM (cmt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
MB = MD (gt)
=> ΔAMB = ΔCMD (c.g.c)
b) Có ΔAMB = ACMD (cmt)
=> AB = CD (hai cạnh tương ứng)
\(\widehat{ABM}=\widehat{CDM}\) (hai góc tương ứng)
Xét ΔAKB và ΔCHD có:
\(\widehat{AKB}=\widehat{CHD}=90^o\) (gt)
AB = CD (cmt)
\(\widehat{ABK}=\widehat{CDH}\) (cmt)
=> ΔAKB = ΔCHD (ch - gn)
=> AK = CH (hai cạnh tương ứng)
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
c: ΔMAB=ΔMDC
=>\(\widehat{MBA}=\widehat{MCD}\)
Xét ΔABH vuông tại H và ΔDCK vuông tại K có
AB=DC
\(\widehat{ABH}=\widehat{DCK}\)
Do đó: ΔABH=ΔDCK
=>BH=CK
BH+HK=BK
CK+HK=CH
mà BH=CK
nen BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có: AB//CE
AB//CD
CD,CE có điểm chung là C
Do đó: C,E,D thẳng hàng
Ta có: AB=EC
AB=CD
Do đó: EC=CD
mà C,E,D thẳng hàng
nên C là trung điểm của DE
a: Xét ΔADM và ΔCBM có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔADM=ΔCBM
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
hay CD\(\perp\)AC