cho M=(x;y) với x;y thuộc N* và x;y < 10. Viết tập hợp N gồm các số tự nhiên có 2 chữ số được lập từ 2 chữ số trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=6x+\dfrac{x^2+2x-x^2+2x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2+4\right)-2x\left(x^2-4\right)}{4x}\)
\(=6+\dfrac{4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x^2-4\right)\left(x^2-2x+4\right)}{4x}\)
\(=6+x^2-2x+4=x^2-2x+10\)
b: Để \(M^2=M\) thì M=0 hoặc M=1
=>\(x\in\varnothing\)
c: Vì \(M=x^2-2x+10=\left(x-1\right)^2+9>0\)
nên \(M^2>M\forall x\)
a: M(x)=-4x^4+x+1+x^2-x=-4x^4+x^2+1
b: M(x)=0
=>-4x^4+x^2+1=0
=>\(x=\pm\sqrt{\dfrac{1+\sqrt{17}}{8}}\)
a)\(f\left(x\right)=5x^3-9x^2+2x+m=5x^2\left(x+2\right)-19x\left(x+2\right)+40\left(x+2\right)-80+m=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để \(f\left(x\right)⋮g\left(x\right)\) thì \(m-80=0\Leftrightarrow m=80\)
b) \(f\left(x\right)=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để f(x) chia g(x) có số dư bằng 3 thì \(m-80=3\Leftrightarrow m=83\)
a, Để M=N thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}=3x-2\left(x-1\right)\\ \Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=3x-2x+2\\ \Leftrightarrow x-\dfrac{2}{3}x=2+\dfrac{1}{3}\\ \Leftrightarrow\dfrac{1}{3}x=\dfrac{7}{3}\\ \Leftrightarrow x=7\)
b, Để M+N=8 thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}+3x-2x+2=8\) (mình làm tắt nhé :>)
\(\Leftrightarrow\dfrac{5}{3}x=8+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{29}{3}\)
\(\Leftrightarrow5x=29\\ \Leftrightarrow x=\dfrac{29}{5}\)
Chúc bạn học tốt nha
để m chia hết cho thì m bằng 9,m ko chia hết cho chín thì m là các số cộng lại mà ko chia hết cho 9
\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Do đó các câu c, f cũng không tồn tại m thỏa mãn
b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)
\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m
Kết hợp 3 TH \(\Rightarrow m\ge2\)
d/ Tương tự như câu b, nhưng
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>3\)
Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)
e/
TH1: \(\Delta\le0\Rightarrow2\le m\le3\)
TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)
\(\Rightarrow m\ge2\)
1: \(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2+2x-\left(m+1\right)=x^2+2x-m-1\)
\(\Delta=2^2-4\left(-m-1\right)=4m+8\)
Để f'(x)>=0 với mọi x thì 4m+8<=0 và 1>0
=>m<=-2
=>\(m\in\left\{-10;-9;...;-2\right\}\)
=>Có 9 số