\(20+21+22+23+....+31\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
Bài làm
x = \(\frac{20}{21}+\frac{21}{22}+\frac{22}{23}+\frac{23}{20}\)
x = 1 + 1 + 1 + 1 + \((\)\(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)
Ta thấy 0 < \(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\)
\(\Rightarrow\) 1 + 1 + 1 + 1 + \((\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)> 4
\(\Rightarrow\)x > 4
Số số hạng trên là :
\(\left(31-20\right):1+1=12\)
Tổng dãy số trên là :
\(\left(20+31\right).12:2=306\)
Vậy tổng dãy số trên là : 306
Số số hạng là :
\(\left(31-20\right):1+1=12\) ( số hạng )
Tổng là :
\(\left(31+20\right).12:2=306\)