Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bác viết nhộn đề gồi :v
\(.\frac{x+4}{20}+\frac{x+3}{21}+\frac{x+2}{22}+\frac{x+1}{23}=-4\)
\(\Rightarrow\frac{x+4}{20}+1+\frac{x+3}{21}+1+\frac{x+2}{22}+1+\frac{x+1}{23}+1=0\)
\(\Rightarrow\frac{x+24}{20}+\frac{x+24}{21}+\frac{x+24}{22}+\frac{x+24}{23}=0\)
\(\Rightarrow\left(x+24\right)\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\right)=0\)
=> x=-24
\(\frac{x+4}{20}+\frac{x+3}{21}\frac{x+2}{22}+\frac{x+1}{23}\)\(=-4\)
\(\Rightarrow\left(\frac{x+4}{20}+1\right)+\left(\frac{x+3}{21}+1\right)+\left(\frac{x+2}{22}+1\right)\)\(+\left(\frac{x+1}{23}+1\right)=0\)
\(\Rightarrow\left(\frac{x+4}{20}+\frac{20}{20}\right)+\left(\frac{x+3}{21}+\frac{21}{21}\right)\)\(+\left(\frac{x+2}{22}+\frac{22}{22}\right)+\left(\frac{x+1}{23}+\frac{23}{23}\right)=0\)
\(\frac{\Rightarrow x+24}{20}+\frac{x+24}{21}+\frac{x+24}{22}+\frac{x+24}{23}=0\)
\(\Rightarrow\left(x+24\right)+\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\right)=0\)
Vì \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\ne0\)
\(\Rightarrow x+24=0\)
\(\Rightarrow x=24\)
Chúc bạn học tốt ( -_- )
a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\)
\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)
Nên x + 1 = 0
=> x = -1
\(\left(\frac{x}{20}+1\right)+\left(\frac{x-1}{21}+1\right)=\left(\frac{x-2}{22}+1\right)+\left(\frac{x-3}{23}+1\right)\)
\(\frac{x+20}{20}+\frac{x+20}{21}-\frac{x+20}{22}-\frac{x+20}{23}=0\)
\(\left(x+20\right).\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)=0\)
mà \(\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)\ne0\)
=> x+20=0 => x=-20
vậy x=-20
\(\frac{x}{20}+\frac{x-1}{21}=\frac{x-2}{22}+\frac{x-3}{23}\)
\(1+\frac{x}{20}+1+\frac{x-1}{21}=1+\frac{x-2}{22}+1+\frac{x-3}{23}\)
\(\frac{x+20}{20}+\frac{21+x-1}{21}=\frac{22+x-2}{22}+\frac{23+x-3}{23}\)
\(\frac{x+20}{20}+\frac{x+20}{21}=\frac{x+20}{22}+\frac{x+20}{23}\)
\(\frac{x+20}{20}+\frac{x+20}{21}-\frac{x+20}{22}-\frac{x+20}{23}=0\)
\(\left(x+20\right)\left(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\right)=0\)
Mà \(\frac{1}{20}+\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\ne0\)
\(\Rightarrow x+20=0\)
\(\Rightarrow x=-20\)
Vậy x = -20
Hnay đi học, cô giáo có sửa cho bạn bài đó hong dọ, do cô mình giao cái bài về nhà y sì dãy í, mà mai nộp ròi, nhưng mình k biết làm, nếu bạn biết , chỉ mình với :((
Theo đề ta có :
\(\frac{x+3}{20}+\frac{x-15}{21}+\frac{x-35}{22}=66\)
\(\Rightarrow\left(\frac{x}{20}+\frac{3}{20}\right)+\left(\frac{x}{21}-\frac{15}{21}\right)+\left(\frac{x}{22}-\frac{35}{22}\right)=66\)
\(\Rightarrow\frac{x}{20}+\frac{3}{20}+\frac{x}{21}-\frac{5}{7}+\frac{x}{22}-\frac{35}{22}=66\)
\(\Rightarrow\left(\frac{x}{20}+\frac{x}{21}+\frac{x}{22}\right)+\left(\frac{3}{20}-\frac{5}{7}-\frac{35}{22}\right)=66\)
\(\Rightarrow x.\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}\right)+\frac{-3319}{1540}=66\)
\(\Rightarrow x.\frac{661}{4620}=66-\frac{-3319}{1540}\)
Tới đây lm đc r chứ nhưng mà hình như Akira Nishihiko , bn viết đề sai hay sao á?
P/s: Chuyển tất cả các hạng tử sang 1 vế rồi cộng thêm 1 vào các vế có dấu (+) đằng trước, cộng thêm -1 vào các hạng tử có dấu (-) phía trước rồi đặt nhân tử chung ra ngoài ta được:
\(Pt\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1979}-\frac{1}{1980}-\frac{1}{1981}-\frac{1}{1982}-\frac{1}{25}+\frac{1}{24}+\frac{1}{23}+\frac{1}{22}\right)=0\)
\(\Leftrightarrow x-2004=0\)
\(\Rightarrow x=2004\)
Vậy x = 2004
https://olm.vn/hoi-dap/detail/263823966145.html?pos=616279814817
Bài làm
x = \(\frac{20}{21}+\frac{21}{22}+\frac{22}{23}+\frac{23}{20}\)
x = 1 + 1 + 1 + 1 + \((\)\(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)
Ta thấy 0 < \(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\)
\(\Rightarrow\) 1 + 1 + 1 + 1 + \((\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)> 4
\(\Rightarrow\)x > 4