thực hiện phép nhân (x+1)(x-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
3(x - 1)(x - 2) - x(3x + 1)(1 - x)
=(3x - 3)(x - 2) - (3x^2 + x)(1 - x)
=3x^2 - 6x - 3x + 6 - (3x^2 - 3x^3 + 1 - x^2)
=3x^2 - 6x - 3x + 6 - 3x^2 +3x^3 - 1 + x^2
= -9x + 5 + x^2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x^2+2x+1\right)\left(x+1\right)\)
\(=x^3+x^2+2x^2+2x+x+1\)
\(=x^3+3x^2+3x+1\)
b) Ta có: \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)
\(=5x^3-x^4-5x^2+x^3+10x-2x^2-5+5x\)
\(=-x^4+6x^3-7x^2+15x-5\)
Ta có: \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)
\(=-\left(5-x\right)\left(x^3-x^2+2x-1\right)\)
\(=x^4-6x^3+7x^2-15x+5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+3\right)^2=\left(x+3\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+3\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow0x=0\)( luôn đúng với mọi x )
Vậy tập nghiệm của phương trình là: \(S=\left\{x\inℝ\right\}\)
b) \(\left(x-1\right)^3=\left(x-1\right)\left(x-1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)^3=\left(x-1\right)^3\)
\(\Leftrightarrow\left(x-1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow0x=0\)( luôn đúng với mọi x )
Vậy tập nghiệm của phương trình là: \(S=\left\{x\inℝ\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
(x+1)(x-4)=x(x-4)+1(x-4)=x2-4x+x-4=x2-3x-4