Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Chủ thớt chuẩn bị dĩa với dụng cụ đi :v
a) Xét \(\Delta ABD\) đều
=> \(\widehat{DAB}=\widehat{ABD}=\widehat{BDA}=60^0\)
Xét \(\Delta ACE\)
=> \(\widehat{CAE}=\widehat{ECA}=\widehat{AEC}=60^0\)
Có : \(\widehat{BAC}+\widehat{DAB}=\widehat{BAC}+\widehat{CAE}\) \(\left(\widehat{CAE}=\widehat{DAB}=60^0\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Xét \(\Delta ACD\) và \(\Delta AEB\) có :
\(\widehat{DAC}=\widehat{EAB}\)
\(AC=AE\) (\(\Delta ACE\) đều)
\(AB=AD\) (\(\Delta ABD\) đều)
=> \(\Delta ACD\)= \(\Delta AEB\) (cạnh - góc - cạnh)
b) Gọi giao điểm của AC và BE là W (chỗ này thì thích gì gọi đó :))
Ta có :
\(\Delta ACD\) = \(\Delta AEB\)
=> \(\widehat{AEB}=\widehat{ACD}\)
Lại có : \(\widehat{AWE}=\widehat{MWC}\)
Theo tổng 3 góc trong tam giác có :
\(\widehat{EAW}+\widehat{AEW}+\widehat{AWE\:}=60^0+\widehat{AEW}+\widehat{AWE}\) (tam giác AEW)
\(\widehat{CMW}+\widehat{MCW}+\widehat{MWC\: }=60^0+\widehat{MCW}+\widehat{MWC}\) (tam giác MWC)
=>
Làm tiếp :
=> \(\widehat{EAW}=\widehat{CMW}=60^0\)
Mà \(\widehat{CMW}+\widehat{CMB}=180^0\)
=> \(\widehat{CMB}=120^0\)
Bn tự vẽ hình nha
a)Ta có:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}\)
\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}\)
mà\(\widehat{DAB}=\widehat{CAE}\left(=60^o\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)
Xét\(\Delta ABE\)và\(\Delta ADC\) có:AB=AD(\(\Delta ABD\)đều)
\(\widehat{BAE}=\widehat{DAC}\left(cmt\right)\)
AE=AC(\(\Delta ACE\)đều)
Do đó:\(\Delta ABE=\Delta ADC\left(c-g-c\right)\)
Sau 1 hồi mò mẫm thì mik ra đc cái hình này hơi sấu thông cảm