K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

a: Xét tứ giác ABEC có 

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABEC là hình chữ nhật

Suy ra: CD⊥AC

b: Xét ΔCAE có 

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

c: Ta có: ΔCAE cân tại C

nên CA=CE

mà CA=BD

nên BD=CE

d: Xét ΔMAE có 

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAE cân tại M

Xét ΔDEA có 

EM là đường trung tuyến

EM=DA/2

Do đó: ΔDEA vuông tại E

hay AE⊥ED

4 tháng 12 2023

A B C D I E M

a/

Ta có

\(\widehat{EAD}=\widehat{BAI}\) (góc đối dỉnh)

\(\widehat{IAC}=\widehat{BAI}\left(gt\right)\)

\(\Rightarrow\widehat{EAD}=\widehat{IAC}\)

Xét tg EAD và tg IAC có

\(\widehat{EAD}=\widehat{IAC}\left(cmt\right)\)

AE=AI (gt); AD=AC (gt)

=> tg EAD = tg IAC (c.g.c)\(\Rightarrow\widehat{ADE}=\widehat{ACI}\)

b/

Xét tg ACD có

AD=AC (gt) => tg ACD cân tại A

Ta có

MD=MC (gt)

\(\Rightarrow\widehat{MAD}=\widehat{MAC}\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh tg cân)

Ta có

tg EAD = tg IAC (cmt) \(\Rightarrow\widehat{EAD}=\widehat{IAC}\)

\(\Rightarrow\widehat{MAD}+\widehat{EAD}=\widehat{MAC}+\widehat{IAC}\)

\(\Rightarrow\widehat{MAE}=\widehat{MAI}\)

Mà \(\widehat{MAE}+\widehat{MAI}=\widehat{EAI}=180^o\Rightarrow\widehat{MAE}=\widehat{MAI}=90^o\Rightarrow AM\perp AI\)

c/

\(AM\perp AI\Rightarrow AM\perp IE\) (1)

Xét tg cân ACD có

MD=MC (gt)

\(\Rightarrow AM\perp CD\) (trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao) (2)

Từ (1) và (2) => IE//CD (cùng vuông góc với AM)

 

6 tháng 2 2016

vẽ hình nha bạn

ghi từng bài thui