Giúp mình giải pt này với
Sin32x + 2sin22x - 3cos2x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là: \(2sin^22x-3cos2x+6sin^2x-9=0\) đúng không nhỉ?
\(\Leftrightarrow2\left(1-cos^22x\right)-3cos2x+3\left(1-cos2x\right)-9=0\)
\(\Leftrightarrow-2cos^22x-6cos2x-4=0\)
\(\Leftrightarrow cos^22x+3cos2x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow...\)
ĐKXĐ: \(sinx\ne\pm1\)
\(\dfrac{3cos2x-2sinx+5}{2\left(1-sin^2x\right)}=0\)
\(\Leftrightarrow3\left(1-2sin^2x\right)-2sinx+5=0\)
\(\Leftrightarrow-6sin^2x-2sinx+8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(loại\right)\\sinx=-\dfrac{4}{3}< -1\left(loại\right)\end{matrix}\right.\)
Vậy pt vô nghiệm
=>(50x+50x+250+65x+11050)*1,1=216500
=>165x+11300=196818,1818
=>165x=185518,1818
=>\(x\simeq124.353\)
Mik chưa học lớp 11 nên ko trả lời đc sorry nha !! mik mới học lớp 6 thui
tìm...x....à?????????????
(x2+x)2+4(x2+x)-12=0
(x2+x)(x2+x)+4(x2+x) = 12
(x2+x) [(x2+x)+4] =12
x(x+1) [x(x+1)+4] =12
...????
đặt \(x^2+x\) = t
ta có : t 2 +4t -12 = 0
\(\Leftrightarrow\) t2+6t-2t-12=0
\(\Leftrightarrow\)t(t+6)-2(t+6)=0
\(\Leftrightarrow\)(t+6)(t-2)=0
<=> thay t = x2+x
đoạn sau tự làm nhé !!!
<=>(x^2+x+1)x^2+x-11=(x-1)(x+2)(x^2+x+5)
=>x=1
=>x+2=0
=>x=-2
áp dụng denta
<=>x^2+x+5=0
1^2-4(1.5)=-19
vì -19<0 =>\(\Delta<0\) ko có nghiệm thực
=>x=-2 hoặc 1
Giải bằng phương pháp hàm số tức là sử dụng đạo hàm để khảo sát đặc điểm của hàm số (tính đơn điệu, cực trị, ... ) bạn nhé.
Đặt f(x)=\(x^5+x^3-\sqrt{1-3x}+4\) với tập xác định \(D=(-\infty;\frac{1}{3}]\)
Xét đạo hàm f'(x) = \(5x^4+3x^2+\frac{3}{2\sqrt{1-3x}}>0\)\(\forall x\in D\)
Từ đó suy ra hàm số y=f(x) đồng biến trên tập xác định D của nó. Suy ra hàm số NẾU có nghiệm thì chỉ có duy nhất một nghiệm.
Mà ta lại nhẩm được f(-1)=0. Vậy phương trình có nghiệm duy nhất \(x=-1\)
\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x+9=9\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\Leftrightarrow x=0;1\)
\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-4x+9}\right)^2=3^2\)
\(\Leftrightarrow4x^2-4x+9=9\)
\(\Leftrightarrow4x^2-4x=0\)\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của pt là S={0;1}