, Chứng minh rằng :
Tích (4+a-3b)^4(3a-5b-1)^4 chia hết cho 16 với mọi số nguyên a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì 3a+b chia hết cho 4 nên 7(3a+b) chia hết cho 4
*21a+7b chia hết cho 4
*(5a+3b)+(16a+4b) chia hết cho 4
mà 16a+4b chia hết cho 4
*5a +3b chia hết cho 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$(4+a-3b)^{2020}(3a-5b-1)^{2020}=[(4+a-3b).(3a-5b-1)]^{2020}$
Muốn cm biểu thức này luôn chia hết cho $16$ ta chỉ cần cm $(4+a-3b)(3a-5b-1)\vdots 2$
Thật vậy:
Xét tổng: $4+a-3b+3a-5b-1=3+4a-8b$ lẻ nên $4+a-3b, 3a-5b-1$ khác tính chẵn lẻ
Do đó tồn tại 1 trong 2 số chẵn
$\Rightarrow (4+a-3b)(3a-5b-1)\vdots 2$
Do đó ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
bạn cần trình bày ra o
bạn giải rõ giúp mk ak