Thu gọn: (3a-2).(2a^2-1)+(a+3).(5-6a^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2a-b\right)\left(b+4a\right)+2a\left(b-3a\right)\)
\(=2ab+8a^2-b^2-4ab+2ab-6a^2\)
\(=\left(2ab+2ab-4ab\right)+\left(8a^2-6a^2\right)-b^2\)
\(=2a^2-b^2\)
b) \(\left(3a-2b\right).\left(2a-3b\right)-6a\left(a-b\right)\)
\(=6a^2-9ab-4ab+6b^2-6a^2+6ab\)
\(=\left(6a^2-6a^2\right)-\left(9ab+4ab-6ab\right)+6b^2\)
\(=-7ab+b^2\)
c) \(5b\left(2x-b\right)-\left(8b-x\right)\left(2x-b\right)\)
\(=10bx-5b^2-\left(16bx-8b^2-2x^2+bx\right)\)
\(=10bx-5b^2-16bx+8b^2+2x^2-bx\)
\(=\left(10bx-16bx-bx\right)-\left(5b^2-8b^2\right)+2x^2\)
\(=-7bx+3b^2+2x^2\)
d) \(2x\left(a+15x\right)+\left(x-6a\right)\left(5a+2x\right)\)
\(=2ax+30x^2+5ax+2x^2-30a^2-12ax\)
\(=\left(2ax+5ax-12ax\right)+\left(30x^2+2x^2\right)-30a^2\)
\(=-5ax+32x^2-30a^2\)
a: =2ab+8a^2-b^2-4ab+2ab-6a^2
=2a^2-b^2
b: =6a^2-9ab-4ab+6b^2-6a^2+6ab
=-7ab+6b^2
c: =10bx-5b^2-16bx+8b^2+2x^2-xb
=3b^2+2x^2-7xb
d: =2xa+30x^2+5ax+2x^2-30a^2-12ax
=32x^2-30a^2-5ax
Lời giải:
a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$
\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)
b)
Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$
$\Leftrightarrow a>2$ hoặc $a< 0$
Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$
ĐKXĐ: \(a\notin\left\{0;2\right\}\)
a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)
\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)
\(=\dfrac{2}{a\left(a-2\right)}\)
b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)
mà 2>0
nên \(a\left(a-2\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)
\(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-36a^2+24a-4\)
\(=-7a^2+4a-7\)
2b: \(=8\sqrt{2}-3\sqrt{2}-3\sqrt{2}-10\sqrt{2}=-8\sqrt{2}\)
3:
a: \(=\left(\sqrt{6a}+\dfrac{\sqrt{6a}}{3}+\sqrt{6a}\right):\sqrt{6a}\)
=1+1/3+1
=7/3
b: \(=\dfrac{2}{3a-1}\cdot\sqrt{3}\cdot a\cdot\left|3a-1\right|\)
\(=\dfrac{2\sqrt{3}\cdot a\left(1-3a\right)}{3a-1}=-2a\sqrt{3}\)
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
Lời giải:
Ta có:
$(3a+2)(2a-1)+(3-a)(6a+2)-17(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=(6a^2-6a^2)+(-3a+4a+18a-2a-17a)+(-2+6+17)$
$=21$ là giá trị không phụ thuộc vào $a$
Ta có đpcm.
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
Lời giải:
\((3a-2)(2a^2-1)+(a+3)(5-6a^2)\)
\(=3a(2a^2-1)-2(2a^2-1)+a(5-6a^2)+3(5-6a^2)\)
\(=6a^3-3a-4a^2+2+5a-6a^3+15-18a^2\)
\(=(6a^3-6a^3)-(4a^2+18a^2)+(-3a+5a)+2+15\)
\(=-22a^2+2a+17\)