Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a +b , rút gọn và tính
(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b= -2.1+2.-1=-2+-2 = -4
b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(2A=\dfrac{2022}{2023}\)
\(A=\dfrac{2022}{2023}:2\)
\(A=\dfrac{1011}{2023}\)
Lời giải:
Ta có:
$(3a+2)(2a-1)+(3-a)(6a+2)-17(a-1)$
$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$
$=(6a^2-6a^2)+(-3a+4a+18a-2a-17a)+(-2+6+17)$
$=21$ là giá trị không phụ thuộc vào $a$
Ta có đpcm.