K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

Ta có:

$(3a+2)(2a-1)+(3-a)(6a+2)-17(a-1)$

$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$

$=(6a^2-6a^2)+(-3a+4a+18a-2a-17a)+(-2+6+17)$

$=21$ là giá trị không phụ thuộc vào $a$

Ta có đpcm.

18 tháng 7 2015

bài 1 : a +b , rút gọn và tính

(-a+b-c)-(a-b-c)= -a+b -c-a+b+c= -2a+2b-2.1+2.-1=-2+-2 = -4

 

21 tháng 2 2018

    

=>1^2 .(-3)^2+2.1-5

=1 .6+3-5

=6+3-5

=4

21 tháng 2 2018

[ 12. (-3)2 ] + (1.2-5)=(1.9) + (-3)=6

30 tháng 4 2022

b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(=\dfrac{2022}{2023}\)

30 tháng 4 2022

\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(2A=\dfrac{2022}{2023}\)

\(A=\dfrac{2022}{2023}:2\)

\(A=\dfrac{1011}{2023}\)