K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

giúp mình với

15 tháng 11 2021

Do x và y là hai đại lượng tỉ lệ thuận nên x1/y1 = x2/y2.

a) x1 = y1x2/y2 = 6.4/12 = 2.

b) y2 = x2y1/x1 = 5.15/3 = 25.

y1=6y2

y1-y2=15

=>y1=18; y2=3

x và y tỉ lệ nghịch

nên x1y1=x2y2

=>x1*18=x2*3

=>x1*6=x2*1

=>x2=6x1

8 tháng 4 2020

8.1/ Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(m-9\right)^2-4.\left(-7\right)=m^2-18m+109>0\Leftrightarrow m\in R\)

Theo định lý viete, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m+9\\x_1x_2=-7< 0\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=16\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=256\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=256\Leftrightarrow\left(m+9\right)^2=256-2\left(-7\right)-2\left|-7\right|=256\)

\(\Leftrightarrow\left(m+9\right)^2=256\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=7\\m=-25\end{matrix}\right.\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

8 tháng 4 2020

\(\Delta=\left(m+12\right)^2+44>0\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi-et ta có \(x_1+x_2=-m-12\)

Vì x1>x2 nên x2<0

=> |x1|-|x2|=15

<=> x1+x2=15

<=> -m-12=15

<=> m=-27

Vậy.........

24 tháng 11 2019

a, Ta có: 2 . x1 = 5 . y1 

\(\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\)\(\Rightarrow\frac{2x_1}{10}=\frac{3y_1}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{2x_1}{10}=\frac{3y_1}{6}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x_1}{5}=3\\\frac{y_1}{2}=3\end{cases}}\Rightarrow\hept{\begin{cases}x_1=15\\y_1=6\end{cases}}\)

b, Vì x và y là 2 đại lượng tỉ lệ nghịch

=> x1 . y1 = a

=> 15 . 6 = a

=> 90 = a

=> x1 = 90 : y1 và x2 = 90 : y2

Ta có: x1 = 2 . x2

\(\Rightarrow\frac{90}{y_1}=2.\frac{90}{y_2}\)\(\Rightarrow\frac{90}{y_1}=\frac{180}{10}\)\(\Rightarrow y_1=\frac{90.10}{180}=5\)

P/s: trình bày khá ngu :<  

24 tháng 11 2019

\(_{^2^{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\sqrt{ }}\)

1 tháng 12 2020

x và y đại lượng tỉ lệ nghịch

x1x2x1x2=y2y1y2y1hay x1 và x2 ta có:

2323=y2y1y2y1y13y13=y22y22

Mà y122+y222=52

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

y13y13=y22y22=y12+y2232+22y12+y2232+22=52135213=4

y13y13=4⇒y1=12

y22y22=4⇒y2=8