cho a,b>0 thoả mãn 3a+5b= 12
tìm GTLN của M= ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Côsi cho 2 số dương, ta có:
\(3a+5b=12\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Theo BĐT cosi ta có:
\(3a+5b\ge2\sqrt{3a\cdot5b}\)
\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)
\(\Leftrightarrow12\ge2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow15ab\le36\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
\(\Leftrightarrow ab\le\dfrac{12}{5}\)
\(\Rightarrow P\le\dfrac{12}{5}\)
Vậy: \(P_{max}=\dfrac{12}{5}\)
a)\(A=a^3-b^3-ab=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(A=a^2+ab+b^2-ab=a^2+b^2\ge0\)
\(minA=0\Leftrightarrow a=b=0\)
b)\(3a+5b=12\Leftrightarrow3a=12-5b\)
\(3B=3ab=\left(12-5b\right).b=-5b^2+12b\)
\(3B=-5b^2+12b-7,2+7,2=-\frac{1}{5}\left(5b-6\right)^2+7,2\le7,2\) \(\Leftrightarrow B\le2,4\)
\(maxB=2,4\Leftrightarrow b=1,2\Leftrightarrow a=2\)
\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)
Dấu " = " xảy ra khi \(3a=5b;3a+5b=12\Leftrightarrow a=2;b=\frac{6}{5}\)
Nguồn: Mr Lazy
\(12=3a+5b\ge2\sqrt{15ab}\)
Suy ra \(\sqrt{ab}\le\frac{12}{2\sqrt{15}}\Rightarrow M=ab\le\frac{12}{5}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}3a=5b\\3a+5b=12\end{cases}}\Rightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)