K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

bạn phân tích A ra như sau ;

A=x^3(x-11)+x^2(x-11)+2x(x-11)+x+5

ta thấy với x=11 thì A=0+0+0+11+5=16

vậy A=16

cách mình là như vậy đó nó có vẻ hơi dở nhỉ

8 tháng 9 2015

a) Đặt P= x4-9x3+21x2+x+a; Q= x2-x-2

Do đa thức P có bậc là 4, đa thức Q có bậc là 2 mà P chia hết cho Q nên đa thức thương có bậc là 2

Đa thức thương có dạng : x2+cx+d

=> x4-9x3+21x2+x+a=(x2-x-2)(x2+cx+d)

=> x4-9x3+21x2+x+a = x4+cx3+dx2-x3-cx2-dx-2x2-2cx-2d

=> x4-9x3+21x2+x+a = x4+(c-1)x3+(d-c-2)x2-(d-2c)x-2d

=> c-1=-9           =>c=-8                    =>c=-8

     d-c-2=21           d=21+2+(-8)             d=15

     -2d=a                a=-2d                      a=(-2).15=-30

Vậy a=-30 để có phép chia hết x4-9x3+21x2+x+a cho x2-x-2

Câu còn lại làm tương tự thôi

15 tháng 1 2017

Gia Huy Đào bạn làm nhầm 1 dấu r phải là -(d+2c)

12 tháng 7 2017

a. Ta có \(a\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)

\(b\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)

\(\Rightarrow c\left(x\right)=a\left(x\right)-b\left(x\right)=x^2+2x+2\)

b. \(c\left(x\right)=2x+1\Rightarrow x^2+2x+2=2x+1\Rightarrow x^2+1=0\)(vô lí )

Vậy không tồn tại x để \(c\left(x\right)=2x+1\)

c. Gỉa sử \(x^2+2x+2=2012\Rightarrow x^2+2x-2010=0\)

\(\Rightarrow\orbr{\begin{cases}x_1=-1+\sqrt{2011}\\x_2=-1-\sqrt{2011}\end{cases}}\)

Ta thấy \(x_1;x_2\in R\)

Vậy c(x) không thể nhận giá trị bằng 2012 với \(x\in Z\)  

7 tháng 9 2015

a) a = -30

b) a = 1; b = -30 

24 tháng 9 2021

\(1,A=\left(3x+7\right)\left(2x+3\right)-\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\\ =6x^2+23x+21-2x-3-6x^2-23x+55\\ =73-2x\left(đề.sai\right)\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ 2,\\ a,\Leftrightarrow30x^2+18x+3x-30x^2=7\\ \Leftrightarrow21x=7\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\\ \Leftrightarrow79x=79\Leftrightarrow x=1\\ c,\Leftrightarrow\left(x+5\right)\left(x^2+3x+2\right)-x^3-8x^2=27\\ \Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\\ \Leftrightarrow17x=17\Leftrightarrow x=1\)

\(d,\Leftrightarrow7x-2x^2-3+x^2+x-6=-x^2-x+2\\ \Leftrightarrow9x=11\Leftrightarrow x=\dfrac{11}{9}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)

Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)

\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)

\(=\dfrac{x}{3\sqrt{x}-1}\)

b) Ta có: \(9x^2-10x+1=0\)

\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào P, ta được:

\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)

c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:

\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)

\(=\dfrac{-10+16\sqrt{7}}{47}\)

10 tháng 7 2021

a)

\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-4\right)+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3x-2\sqrt{x}-1-3\sqrt{x}+4+5\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{3\left(x+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\dfrac{3\sqrt{x}+1}{3}\)

\(P=\dfrac{x+1}{3\sqrt{x}-1}\)

9 tháng 2 2020

Sắp xếp lại các đa thức ta có: 

\(A\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)

\(B\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)

a) Ta có: \(C\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(=\left(x^5+3x^4-2x^3-9x^2+11x-6\right)-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)

\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)

\(=x^2+2x+2\)

b) \(C\left(x\right)=2x+2\)\(\Leftrightarrow x^2+2x+2=2x+2\)

\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)

Vậy \(x=0\)

c) \(C\left(x\right)=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Giả sử ta có: \(C\left(x\right)=2012\)\(\Rightarrow\left(x+1\right)^2+1=2012\)

\(\Leftrightarrow\left(x+1\right)^2=2011\)

Vì \(x\inℤ\)\(\Rightarrow\left(x+1\right)^2\)là số chính phương

mà 2011 không là số chính phương \(\Rightarrow\)C(x) không thể nhận giá trị bằng 2012 ( đpcm )

15 tháng 7 2021

a) 6x(5x + 3) + 3x(1 – 10x) = 7  

⇒ 30x2+18x+3x-30x2=7

⇒21x=7

⇒x=\(\dfrac{7}{21}\)

⇒x= \(\dfrac{1}{3}\)

 

15 tháng 7 2021

b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44

⇒15x-63x2-15+63x + 63x2-35x+36x-20=44

⇒79x-35=44

⇒79x=44+35

⇒79x=79

⇒x=1

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha