a) cho hai số dương x,y thoả mãn \(x+y=3\sqrt{xy} \)
tính tỉ số \( {x\over y}\)
b) tính \(P=u^8+ \frac{1}{u^8}\)
biết \(u = \sqrt{2}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\left(x-1\right)\left(x^2-2\left(x-1\right)\right)=0\)
<=> \(x^4+\left(x-1\right)\left(x^2-2x+2\right)=0\)
<=> \(x^4+x^3-2x^2+2x-x^2+2x-2=0\)
<=> \(x^4+x^3-3x^2+4x-2=0\)
<=> \(x^4+2x^3-2x^2-x^3-2x^2+2x+x^2+2x-2=0\)
<=> \(x^2\left(x^2+2x-2\right)-x\left(x^2+2x-2\right)+\left(x^2+2x-2\right)=0\)
<=> \(\left(x^2-x+1\right)\left(x^2+2x-2\right)=0\)
Hoàn toàn CM đc x2-x+1>0 vs mọi x
=> \(x^2+2x-2=0\) <=> \(\left(x+1\right)^2=3\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-1\\x=-\sqrt{3}-1\end{matrix}\right.\)(ktm)
Vậy pt vô nghiệm
\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)
\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)
Dấu = xảy ra khi x=y=z=1
cho x,y là 2 số dương thỏa mãn x+y=1 , tìm GTNN của A= \(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Bạn vào link tham khảo :
https://hoidap247.com/cau-hoi/1226651
# Hok tốt !
\(x+y=1\Rightarrow\hept{\begin{cases}1-x=y\\1-y=x\end{cases}}\)
thay vào A ta được : \(A=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}\)
\(\Rightarrow A=\frac{1}{\sqrt{y}}-\sqrt{y}+\frac{1}{\sqrt{x}}-\sqrt{x}\)
\(\Rightarrow A=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\)
áp dụng \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) ta có : \(\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(\sqrt{x}^2+\sqrt{y}^2\right)=2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)
\(\Rightarrow A\ge\sqrt{8}-\sqrt{2}=\sqrt{2}\)
dấu = xảy ra khi a=y=1/2
Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)
\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)
\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)
hay \(A=\sqrt{2018}\)
câu a là tính tỉ số x/y nhé
\(x+y=3\sqrt{xy}\)
\(\Leftrightarrow\)\(\frac{x}{y}+1=3\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow\)\(\frac{x}{y}-3\sqrt{\frac{x}{y}}+\frac{9}{4}=\frac{5}{4}\)
\(\Leftrightarrow\)\(\left(\sqrt{\frac{x}{y}}-\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\)\(\frac{x}{y}=\frac{7+3\sqrt{5}}{2}\)