Giúp đi mai kiểm tra rồi
\(\frac{x}{\sqrt{x+2}}+\sqrt{x+1}=\sqrt{3x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-3\sqrt{x-1}+3=0\)\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x-1}-1\right)-3\left(\sqrt{x-1}-1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\sqrt{x-2}-3=0va\sqrt{x-1}-1=0\)\(\Leftrightarrow x=9vax=2\)
Bài 1: Ta có: \(3\sqrt{12}=\sqrt{9}.\sqrt{12}=\sqrt{108}\)
và \(2\sqrt{26}=\sqrt{4}.\sqrt{26}=\sqrt{104}\)
Vì \(108>104\Rightarrow\sqrt{108}>\sqrt{104}\)
Hay \(3\sqrt{12}>2\sqrt{26}\)
Bài 2:
\(\frac{5}{4}\sqrt{12x}-\sqrt{12x}-3=\frac{1}{6}\sqrt{12x}\)
\(\Leftrightarrow\frac{5}{4}\sqrt{12x}-\sqrt{12x}-\frac{1}{6}\sqrt{26}=3\)
\(\Leftrightarrow\frac{1}{12}\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{1}{12^2}}.\sqrt{12x}=3\)
\(\Leftrightarrow\sqrt{\frac{x}{12}}=3\)
\(\Leftrightarrow\frac{x}{12}=9\)
\(\Leftrightarrow x=108\)
Bài 3: Với \(x>0;y>0\), ta có:
\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}+\sqrt{y}}=\frac{\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{x^2y}-\sqrt{xy^2}}{\sqrt{xy}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\sqrt{xy}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}}.\left(\sqrt{y}+\sqrt{x}\right)\)
\(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)\)
\(=y-x\)
Hầu hết các dạng bài này bạn chỉ cần quy đồng là ra ngay nhé :)
Điều kiện xác định : \(0< x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
<=>\(x+\sqrt{\left(x+1\right)\left(x+2\right)}=\sqrt{3x+1}\)
bình phương 2 vế lên
\(x^2+\left(x+1\right)\left(x+2\right)+2x\sqrt{\left(x+1\right)\left(x+2\right)}=\left(3x+1\right)\left(x+2\right)\)
khai triển ra ta đc
\(2x^2+2x+2+2x\sqrt{\left(x+1\right)\left(x+2\right)}=3x^2+7x+2\)
<=>\(2x\sqrt{\left(x+1\right)\left(x+2\right)}=2x^2+4x\)
<=>\(x\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+2x\)