K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

a) Xét tam giác BEC và tam giác CDB

+) BC Chung

+) \(\widehat{EBC}=\widehat{DCB}\)

+) \(\widehat{BCE}=\widehat{DBC}=\frac{1}{2}\left(\widehat{ABC}\right)=\frac{1}{2}\widehat{ACB}\)

Vậy tam giác BEC = tam giác CDB ( g.c.g)

Suy ra BE = CD (2 cạnh tương ứng)

b) ?

c) Xét tam giác ABC.Theo định lý Ta-lét đảo:

\(\hept{\begin{cases}AB=AC\\EB=CD\end{cases}\Rightarrow}\frac{BE}{BA}=\frac{CD}{CA}\)

Vậy ED//BC(1)

\(\widehat{ABC}=\widehat{ACB}\left(2\right)\)

Từ (1)(2) ta có CDBE là hình thang cân

d) O là giao của 2 tia phân giác BD và CE

Vậy AO là phân giác của góc BAC

Ta có ABC là tam giác cân nên AM vừa là trung tuyến vừa là phân giác

Suy ra góc A chỉ có 1 tia phân giác hay A,O,M thẳng hàng

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

=>BE=DC

=>AE=AD

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

=>A,I,M thẳng hàng

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `2\Delta` vuông và `BEC` và `CDB`:

`\text {BC chung}`

$\widehat {B} = \widehat {C}$

`=> \Delta BEC = \Delta CDB (ch-gn)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)

`-> \text {AE = AD}`

Xét `2\Delta` vuông `AEI` và ` ADI`:

`\text {AE = AD}`

`\text {AI chung}`

`=> \Delta AEI = \Delta ADI (ch-cgv)`

`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$

`-> \text {AI là tia phân giác của}` $\widehat {EAD}$

Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)

`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`

`c,`

Vì M là trung điểm của AC

`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`

Từ `(1)` và `(2)`

`-> \text {Ba điểm A, I, M thẳng hàng.}`

loading...

19 tháng 1 2021


A B C D E i H

A) Ta có tam giác ABC cân

=> AB = AC 

Mà AD + DB = AB

      AE + EC = AC

=> DB = EC ( AD = AE gt)

b) đề phải là BE và CD cắt nhau tại I

Ta có AD = AE 

=> Tam giác ADE cân tại A

=> Góc ADE = Góc AED

=> Góc EDB = Góc DEC ( Cùng cộng nhau bằng 180 độ )

Xét Tam giác DEB và tám giác EDC có 

 BD = EC (cmt)

Góc EDB = Góc DEC (cmt)

DE là cạnh chung

=> Tam giác DEB và tam giác EDC (c-g-c)

=> Góc DBE = Góc ECD

=> Góc IBC = Góc ICB ( cùng cộng góc  DBE và Góc ECD bằng hai góc ABC và Góc ACB)

=> Tam giác IBC cân

c) Ta có tam giác ADE cân \(\Leftrightarrow\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Và tam giác ABC cân \(\Leftrightarrow\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2)\(\Leftrightarrow\widehat{ADE}=\widehat{ABC}\)

Hai góc này ở vị trí đồng vị bằng nhau 

=> DE // BC (đpcm)

d) Ta có điểm I cách đều cạnh AB và AC

=> AI là tia phân giác của tam giác ABC

trong tam giác cân tia phân giác cũng là đường cao 

=> AI vuông góc với BC

E) chứng minh HI là tia phân giác của tam giác BHC 

thì ba điểm thẳng hàng

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath