K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

a. (2x + 3y)2 

= (2x)2 + 2.2x3y + (3y)2

= 4x2 + 12xy + 9y2

b. (5x - y)2

= (5x)2 - 2.5xy + y2

= 25x2 - 10xy + y2

11 tháng 7 2017

a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)

\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)

c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)

\(\Rightarrow x=-\frac{3}{5}\)

12 tháng 7 2017

cảm ơn bạn nhiều nhé 

kb vs mình đi 

14 tháng 3 2017

a/ \(5x^2-\left(3y^2+5x^2\right)-\left(4x^2-3y^2\right)\)

\(=5x^2-3y^2-5x^2-4x^2+3y^2\)

\(=\left(5x^2-5x^2-4x^2\right)+\left(3y^2-3y^2\right)\)

\(=-4x^2\)

b/ \(2x\left(x^2-y^2\right)-3x\left(2x^2+3y^2\right)\)

\(=2x^3-2xy^2-6x^3-9xy^2\)

\(=\left(2x^3-6x^3\right)+\left(-2xy^2-9xy^2\right)\)

\(=-4x^3-11xy^2\)

14 tháng 3 2017

a)5x^2 - (3y^2 + 5x^2 ) - (4x^2 - 3y^2)

=5x^2 - 3y^2 - 5x^2 - 4x^2 + 3y^2

=5x^2 - 5x^2 - 4x^2 - 3y^2 + 3y^2

=-4x^2

b)2x(x^2 - y^2) - 3x (2x^2 +3y^2)

=2x^3 - 2xy^2 - 6x^3 - 9xy^2

=2x^3 - 6x^3 -2xy^2 -9xy^2

=-4xy^3 - 11xy^2

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)

a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4

=>-2x+y=4 và 20x+3y=2

=>x=-5/13; y=42/13

b: =>4x+2|y|=8 và 4x-3y=1

=>2|y|-3y=7 và 4x-3y=1

TH1: y>=0

=>2y-3y=7 và 4x-3y=1

=>-y=7 và 4x-3y=1

=>y=-7(loại)

TH2: y<0

=>-2y-3y=7 và 4x-3y=1

=>y=-7/5; 4x=1+3y=1-21/5=-16/5

=>x=-4/5; y=-7/5

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)

16 tháng 6 2017

Bài 1 :

a) \(\left(3x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=2014\)

\(\Leftrightarrow9x^2-6x+1-\left(9x^2-4\right)=2014\)

\(\Leftrightarrow-6x=2009\)

\(\Leftrightarrow x=-\dfrac{2009}{6}=-334\dfrac{5}{6}\)

b) \(5x^2+4xy+4y^2+4x+1=0\)

\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)=0\)

\(\Leftrightarrow\left(x+2y\right)^2+\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{4}\end{matrix}\right.\)

Bài 2 :

Ta có :

\(D=\left(4x^2-12xy+9y^2\right)-\left(9y^2-4\right)-\left(1-4x+4x^2\right)+12xy-4x\)

\(=4x^2-12xy+9y^2-9y^2+4-1+4x-4x^2+12xy-4x=3\)

Vậy biểu thức D không phụ thuộc vào các biến x,y

17 tháng 5 2019

A= 3xy-11x2-5y.8xy-5+6

=(3-11-5.8-5+6).(x2.x2.x).(y.y.y)

=-47x5y3

17 tháng 2 2017

a,thay x=1,y=-1

=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12

b,thay=-1/2,y=1/7

=>B=4

17 tháng 2 2017

thks yeu

1)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-1;2\right)\)

2)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

3)

HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

4) 

HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;2\right)\)

 

NV
23 tháng 7 2021

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

NV
23 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)