Giúp mk nha
Cho tam giác ABC vuông tại A,phân giác CD
H là hình chiếu của B lên đừng thẳng CD
Trên CD lấy điểm Esao cho H là trung điểm của DE
F là giao điểm của BH và CA
Cm:a, góc CBE=góc ADC
b, BE vuông góc BC
c, DF song song BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE
a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE
a,\(\Delta\)BED có H là trung điểm của DE và BH \(\perp\) DE
=> \(\Delta\)BED cân ở B
=> Góc BED = Góc BDE
Góc BDE = Góc ADC (đối đỉnh)
=> Góc BED = Góc ADC
\(\Delta\)BED cân ở B => BH là phân giác của góc EBD
=> gócEHB = gócDBH
mà gócDBH = 90⁰ - gócBFA = 90⁰ - gócHFC = gócACD
=> gócEBH = gócACD
b, gócEBH = gócACD = gócDCB (vì CH là phân giác của gócACB)
= 90⁰ - gócCBH
=> gócEHB + gócCBH = 90⁰
=> BE \(\perp\) BC
c, △FBC có CH \(\perp\) BF ; BA \(\perp\) FC ; CH \(\cap\) BA = D
=> D là trực tâm của \(\Delta\)FBC
=> FD \(\perp\) BC
BE \(\perp\) BC
=> FD//BE
1) a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE
a, Xét 2 t.giác vuông BHE và BHD có:
HD=HE(gt)
HB cạnh chung
=> t.giác BHE=t.giác BHD(cạnh góc vuông- cạnh góc vuong)
=> \(\widehat{EBH}\)=\(\widehat{DBH}\)(2 góc tương ứng)
=> BH là p/g của \(\widehat{EBD}\)<=>BF là p/g của \(\widehat{EBD}\)
Mik nghĩ phần a) sai đề. Phần a) phải chứng minh góc CBH= góc ADC
a) Có: CD là tia phân giác của góc C
=> góc ACD= góc BCH
Mà góc BCH+góc CBH=90o
góc ACD+góc ADC=90o
=> góc CBH=góc ADC (đpcm)
b) Dễ c/m: tam giac BHE=tam giac BHD (c.g.c)
=> góc BEH=góc BDH (t/ư)
=> góc BEC=góc CBH (=góc CDA)
Mà góc CBH+góc BCH=90o
=> góc BEC+góc BCH=90o
=> góc CBE=90o
=> BE vuông góc với BC
c) Dễ c/m: tam giác CBH=tam giác CFH (g.c.g)
=> CF=CB (t/ư)
=> tam giác CDF=tam giác CDB (c.g.c)
=> DF=DB (t/ư)
=> tam giác DBF cân tại D
=> góc DBF=góc DFB
Mà góc DBF=góc EBF
=> góc EBF=góc DFB
Mà 2 góc này ở vị trí so le trong
=> DF song song với BE
NHỚ TÍCH CHO MIK NHÉ ^^