cho tam giac abc có ^a=30,^b-^c=20.cmr abc la tam giac vuong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tam giac DFC va tam giac DEB có
DB=DC
D CHUNG
GÓC DFC= GOC DEB
=> TAM GIÁC DEB = TAM GIÁC DFC(GCG)
B,XÉT TAM GIÁC AED VÀ TAM GIÁC AFD CO
AD CHUNG
AF=AE
GÓC AFD = GÓC AED
=> TAM GIÁC AED = TAM GIÁC AFD (CGC)
A B C D E F 1 2 1 1 2 2
Giải:
a) Xét \(\Delta DEB,\Delta DFC\) có:
\(\widehat{E_2}=\widehat{F_2}=90^o\)
DB = DC ( \(=\frac{1}{2}BC\) )
\(\widehat{B}=\widehat{C}\) ( t/g ABC cân tại A )
\(\Rightarrow\Delta DEB=\Delta DFC\) ( c.huyền - g.nhọn ) ( đpcm )
b) Vì \(\Delta DEB=\Delta DFC\)
\(\Rightarrow DE=DF\) ( cạnh t/ứng )
Xét \(\Delta AED,\Delta AFD\) có:
AD: cạnh chung
\(\widehat{E_1}=\widehat{F_1}=90^o\)
DE = DF ( cmt )
\(\Rightarrow\Delta AED=\Delta AFD\) ( c.huyền - c.g.vuông ) ( đpcm )
c) Vì \(\Delta AED=\Delta AFD\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow AD\) là tia phân giác của \(\widehat{BAC}\) ( đpcm )
A B C E F 1 2
a, Vì tam giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}\) ( 2 góc ở đáy bằng nhau )
Xét tam giác DEB và tam giác DFC có:
BD = DC ( D là trung điểm của đoạn thẳng BC )
\(\widehat{BED}=\widehat{CFD}\) (=90*)
\(\widehat{B}=\widehat{C}\) (CMT)
Do đó: \(\Delta DEB=\Delta DFC\left(g-c-g\right)\) đpcm
b, Vì AE + EB = AB
AF + FC = AC
mà AB = AC ( tam giác ABC cân tại A)
và BE = CF \(\left(\Delta BED=\Delta CFD\right)\)
=> AE = AF
Xét hai tam giác AED và AFD có:
AE = AF (CMT)
AD: Cạnh chung
\(\widehat{AED}=\widehat{AFD}\) (=90*)
Do đó: \(\Delta AED=\Delta AFD\left(c-g-c\right)\) đpcm
c, Vì tam giác AED = t/g AFD (câu b)
=> \(\widehat{A1}=\widehat{A2}\) ( 2 góc tương ứng )
Vì AD nằm giữa AE và AF
và \(\widehat{A1}=\widehat{A2}\)
=> AD là tia phân giác của \(\widehat{BAC}\) đpcm
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
a) tam giac DEB=tam giac DFC (ch-gn)=>EB=FC
b) ta có AE+EB=AB
AF+FC=AC
MÀ AB=AC (tam giac ABC cân tại A)
EB=FC (cmt)
=>AE=AF
tam giac AED=tam giac AFD (ch-cgv)
c) tam giac ABC có AD là trung tuyến (D là trung điểm của BC)
=> AD là pg của góc BAC
a: Xét ΔBIA và ΔCID có
IB=IC
góc BIA=góc CID
IA=ID
Do đó: ΔBIA=ΔCID
b: Xét ΔABC và ΔDCB có
AB=DC
BC chung
AC=BD
Do đó: ΔABC=ΔDCB
c: Xét tứ giác ABDC có
I là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
=>BD vuông góc với AB
Bạn xem lại đề giúp mình nhé đề như bạn thì B trùng với M mất rồi
hung nguyen em sai đề câu a) nhé, phải là tam giác BIA = tam giác CID
A B C D I
a) Xét tam giác BIA và tam giác CID có :
BI = IC ( gt )
BIA = CID ( đối đỉnh )
AI = DI ( gt )
=> tam giác BIA = tam giác CID ( c-g-c )
=> đpcm
b) Vì tam giác BIA = tam giác CID ( chứng minh câu a )
=> ABI = DCI ( 2 góc tương ứng ) và AB = CD ( 2 cạnh tương ứng )
=> AB // CD ( vì 2 góc trên ở vị trí so le trong )
=> BAC = ACD = 900
Chứng minh tương tự câu a) ta có tam giác BID = tam giác CIA ( c-g-c )
=> BD // AC ( tự chứng minh tương tự như trên )
=> ACD = CDB = 900
Xét tam giác ABC và tam giác DCB có :
AB = DC ( cmt )
BAC = CDB ( = 900 )
ABI = DCI ( cmt )
=> tam giác ABC = tam giác DCB ( g-c-g )
=> đpcm
c) Từ câu b ta có AB // CD
=> CDB + góc ABD = 1800 ( trong cùng phía )
mà CDB = 900 => ABD = 1800 - 900 = 900
=> AB vuông góc BD ( đpcm )
Mày câm mồm lại
Hỏi cô mày ý !
Hello !
Bển xỉn
Âm đfi