Tính \(\sqrt{\left(3-\sqrt{5}\right)^2}\)+ \(\sqrt{6-2\sqrt{5}}\)
\(\sqrt{9+4\sqrt{5}}\)-\(\sqrt{5}\)
mọi người giúp mình vs. giải đầy đủ ra hộ mình nha tks nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2\left(\sqrt{6-2\sqrt{5}}+6-2\sqrt{5}+1\right)}{\sqrt{6-2\sqrt{5}}}\)
\(=\dfrac{2\left[\left(\sqrt{\sqrt{5^2}-2\sqrt{5}+1}\right)+6-2\sqrt{5}+1\right]}{\sqrt{5^2-2\sqrt{5}+1}}\)
\(=\dfrac{2\left[\sqrt{\left(\sqrt{5}-1\right)^2}+6-2\sqrt{5}+1\right]}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2\left(\left|\sqrt{5}-1\right|+6-2\sqrt{5}+1\right)}{\left|\sqrt{5}-1\right|}\)
\(=\dfrac{2\left(\sqrt{5}-1+6-2\sqrt{5}+1\right)}{\sqrt{5}-1}\)
\(=\dfrac{2\left(-\sqrt{5}+6\right)}{\sqrt{5}-1}\)
#Ayumu
1) \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)=\left(\sqrt{19}\right)^2-3^2=19-9=10\)
2) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{8+2\sqrt{7}}{2}}-\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1}{\sqrt{2}}-\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
3) \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}=\sqrt{8+\sqrt{4.15}}+\sqrt{9.5}-\sqrt{4.3}\)
\(=\sqrt{8+2\sqrt{15}}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+3\sqrt{5}-2\sqrt{3}=\left|\sqrt{5}+\sqrt{3}\right|+3\sqrt{5}-2\sqrt{3}\)
\(\sqrt{5}+\sqrt{3}+3\sqrt{5}-2\sqrt{3}=4\sqrt{5}-\sqrt{3}\)
4) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2.2.\sqrt{5}+2^2}-\sqrt{\left(\sqrt{5}\right)^2+2.2.\sqrt{5}+2^2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
a) \(\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}+\sqrt{2}\right)\)
\(=\left(9-5\right).\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{5-2\sqrt{5}+1}.\left(\sqrt{5}+1\right)\)
\(=4.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\)
\(=4.\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4.\left(5-1\right)=16\)
b) \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{5-2\sqrt{5}+1}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right)\)
\(=2\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5+2\sqrt{5}+1}.\left(\sqrt{5}-1\right)\)
\(=2\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\)
\(=2.\left(5-1\right)=2.4=8\)
\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)
\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)
\(=11.2.13.\sqrt{9}-1=286.3-1=857\)
\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)
\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)
\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)
b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)
\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)
\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)
=-26
\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)
\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=3-\sqrt{5}+\sqrt{5}-1=2\)
\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)
\(=\sqrt{5}+2-\sqrt{5}=2\)
Chúc học tốt!!!!!!!!!!!!!