K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

Nếu x=0 => 1+288=y^2=> y^2=289 => y= 17 hoặc -17

Nếu x>=1 => 10^x tận cùng là 0 => 10^x+288 tận cùng là 8 hay y^2 tận cùng là 8 (vô lý)

Vậy x=0

19 tháng 8 2019

ukm thanks bạn

AH
Akai Haruma
Giáo viên
5 tháng 9 2020

Lời giải:

Ta thấy:

$10x\equiv 0\pmod 5$

$288\equiv 3\pmod 5$

$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)

Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.

Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.

27 tháng 9 2018

Xét x = 0 thì:  10 0 + 48 = y 2 ⇔ y 2 = 49 = 7 2 => y = 7

Xét với x ≠ 0 thì 10 x  có chữ số tận cùng là 0, Do đó  10 x + 48 có tận cùng là 8

Mà y 2 là số chính phương nên không thể có tận cùng là 8

 Vậy x = 0, y = 7

15 tháng 7 2018

1 tháng 10 2021

180< x < 200 và x là số TN \(\Rightarrow\)\(\in\)( 181;182;...;199)

mà x là số chẵn\(\Rightarrow\)\(\in\)( 182;184;...;198)

1 tháng 10 2021

180<190<200

9 tháng 6 2019

\(2y\left(x+1\right)-x-7=0\)

\(\Rightarrow2y\left(x+1\right)-x-1-6=0\)

\(\Rightarrow2y\left(x+1\right)-\left(x+1\right)=6\)

\(\Rightarrow\left(x+1\right)\left(2y-1\right)=6\)

..........

Chia ra các trường hợp em nhé

9 tháng 6 2019

em cảm ơn chị ạ .

9 tháng 6 2019

a)\(x^{2016}=x^{2017}\)

 \(\Leftrightarrow x^{2017}-x^{2016}=0\)

\(\Leftrightarrow x^{2016}.\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^{2016}=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vay ...

9 tháng 6 2019

b) \(2y.\left(x+1\right)-x-7=0\)

\(\Leftrightarrow2y.\left(x+1\right)-\left(x+1\right)=6\)

\(\Leftrightarrow\left(x+1\right).\left(2y+1\right)=6\)

Đến chỗ này bạn tự tìm các cặp x,y nha

22 tháng 12 2022

Dùng phương pháp chặn :

\(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2 

\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3  (1)

x2 + y2 + z2  = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)

Kết hợp (1) và (2) ta có : 

34/3  \(\le\) z2 \(\le\)  34 

\(\Rightarrow\) z2 \(\in\) { 16; 25}

vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}

th1 Z = 4 ta có :

x2 + y2 + 16 = 34

x2 + y2 = 12 

\(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)

x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)

Kết hợp (*) và (**) ta có :

\(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3

với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)

th2 : z = 5 ta có :

x2 + y2 + 25 = 34

\(\Rightarrow\) x2 + y2 = 34 - 25  = 9

\(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)

x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)

Kết hợp (a) và (b) ta có :

9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3

với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0

kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt