Tìm các số tự nhiễn,y biết 10x+288=y2.
Mọi người giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy:
$10x\equiv 0\pmod 5$
$288\equiv 3\pmod 5$
$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)
Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.
Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.
Xét x = 0 thì: 10 0 + 48 = y 2 ⇔ y 2 = 49 = 7 2 => y = 7
Xét với x ≠ 0 thì 10 x có chữ số tận cùng là 0, Do đó 10 x + 48 có tận cùng là 8
Mà y 2 là số chính phương nên không thể có tận cùng là 8
Vậy x = 0, y = 7
180< x < 200 và x là số TN \(\Rightarrow\)x \(\in\)( 181;182;...;199)
mà x là số chẵn\(\Rightarrow\)x \(\in\)( 182;184;...;198)
\(2y\left(x+1\right)-x-7=0\)
\(\Rightarrow2y\left(x+1\right)-x-1-6=0\)
\(\Rightarrow2y\left(x+1\right)-\left(x+1\right)=6\)
\(\Rightarrow\left(x+1\right)\left(2y-1\right)=6\)
..........
Chia ra các trường hợp em nhé
a)\(x^{2016}=x^{2017}\)
\(\Leftrightarrow x^{2017}-x^{2016}=0\)
\(\Leftrightarrow x^{2016}.\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^{2016}=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vay ...
b) \(2y.\left(x+1\right)-x-7=0\)
\(\Leftrightarrow2y.\left(x+1\right)-\left(x+1\right)=6\)
\(\Leftrightarrow\left(x+1\right).\left(2y+1\right)=6\)
Đến chỗ này bạn tự tìm các cặp x,y nha
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
Nếu x=0 => 1+288=y^2=> y^2=289 => y= 17 hoặc -17
Nếu x>=1 => 10^x tận cùng là 0 => 10^x+288 tận cùng là 8 hay y^2 tận cùng là 8 (vô lý)
Vậy x=0
ukm thanks bạn