Trục căn thức ở mẫu \(\frac{1}{3\sqrt{5}-7}\)
Các bạn giải gấp cho mk câu này nha . Mk đang cần rất gấp bạn nào giải đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\sqrt{\frac{15}{2}}\cdot\sqrt{\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{\frac{15}{2}\cdot\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{25\left(a-1\right)^2}\\ =5\left|a-1\right|\\ =\left[{}\begin{matrix}5\left(a-1\right)\left(a=1\right)\\5\left(1-a\right)\left(a< 1\right)\end{matrix}\right.\\ =\left[{}\begin{matrix}5a-5\\5-5a\end{matrix}\right.\)
P.s: Ko chắc lắm nha :v
ĐK: \(x\ge\frac{1}{2}\)
Đặt \(t=\sqrt{2x-1}\Leftrightarrow x=\frac{t^2+1}{2}\)(ĐK: \(t\ge0\)) thay vao phương trình ta được:
\(\sqrt{\frac{t^2+1}{2}+4+3t}\)+\(\sqrt{\frac{t^2+1}{2}+12-5t}=7\sqrt{2}\)
\(\Leftrightarrow\sqrt{\frac{t^2+6t+9}{2}}+\sqrt{\frac{t^2-10t+25}{2}}=7\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{\left(t+3\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(t-5\right)^2}}{\sqrt{2}}=7\sqrt{2}\)
\(\Leftrightarrow\frac{\left|t+3\right|+\left|t-5\right|}{\sqrt{2}}=7\sqrt{2}\)
\(\Leftrightarrow t+3+\left|t-5\right|=14\)(vì \(t\ge0\Rightarrow t+3>0\))
\(\Leftrightarrow t+\left|t-5\right|=11\)
Xét TH: \(t-5\ge0\Leftrightarrow t\ge5\) thì ta có:
\(t+t-5=11\)
\(\Leftrightarrow2t=16\)
\(\Leftrightarrow t=8\)(chọn)
Xét TH: \(t-5< 0\Leftrightarrow t< 5\) thì ta có:
\(t-t+5=11\)
\(\Leftrightarrow5=11\)(vô lí nên loại)
Lại có: \(t=8\)
\(\Leftrightarrow\sqrt{2x-1}=8\)
\(\Leftrightarrow2x-1=64\)
\(\Leftrightarrow2x=63\)
\(\Leftrightarrow x=\frac{63}{2}=31\frac{1}{2}\)
Vậy nghiệm của phương trình là x=31\(\frac{1}{2}\)
So sánh A=(2∛5)3 và B=(1/2)3.(∛311)3
Ta có : A = 40; B = 311/8 < 320/8 = 40.
Suy ra A>B.
Suy ra 2∛5 > (1/2).∛311
Ta có :
\(B=\left(\frac{1}{x-4}-\frac{1}{x+4\sqrt{x}+4}\right).\frac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left(\frac{1}{\left(\sqrt{x}+2\right)\left(\sqrt{x-2}\right)}-\frac{1}{\left(\sqrt{x}+2\right)^2}\right).\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2\left(\sqrt{x}-2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(\frac{1}{3\sqrt{5}-7}\)=\(\frac{3\sqrt{5}+7}{\left(3\sqrt{5}-7\right)\left(3\sqrt{5}\right)+7}\)=\(\frac{3\sqrt{5}+7}{\left(3\sqrt{5}\right)^2-7^2}\)=\(\frac{3\sqrt{5}+7}{-4}\)