K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Rút gọn nhé

NV
11 tháng 10 2019

\(A=\left(1-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\right):\left(\frac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)-\left(9-a\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\right)\)

\(=\left(\frac{\sqrt{a}+3-\sqrt{a}}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\right):\left(\frac{\left(\sqrt{a}-2\right)^2-a+9-9+a}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\right)\)

\(=\frac{3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}:\left(\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\right)\)

\(=\frac{3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}.\frac{\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)}=\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)

Để \(A+\left|A\right|\ne0\Rightarrow\left|A\right|\ne-A\Rightarrow A>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}< 2\\\sqrt{a}>3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a< 4\\a>9\end{matrix}\right.\)

Kết hợp điều kiện \(\Rightarrow\left[{}\begin{matrix}0\le a< 4\\a>9\end{matrix}\right.\)

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

9 tháng 7 2019

a) \(A=\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)

\(A=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}\)

\(A=\frac{\sqrt{3}+1}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\frac{5+3\sqrt{5}}{\sqrt{5}}\)

\(A=1\)

b) Ta có:

\(B=\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\) ( x >= 0, x khác 9 )

\(B=\frac{3+\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(B=\frac{3+\sqrt{x}+3\sqrt{x}-x+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(B=\frac{3+\sqrt{x}+3\sqrt{x}+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(B=\frac{\left(3+\sqrt{x}\right)+3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(B=\frac{4\left(3+\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(B=\frac{4}{3-\sqrt{x}}\)

Để B > A

\(\Rightarrow\frac{4}{3-\sqrt{x}}>1\)

\(\Rightarrow4>3-\sqrt{x}\)

\(\Rightarrow4-3+\sqrt{x}>0\)

\(\Rightarrow1+\sqrt{x}>0\)

\(\Rightarrow\sqrt{x}>-1\)

\(\Rightarrow x>1\)

9 tháng 7 2019

a) A=\(\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}+\frac{5+3\sqrt{5}}{\sqrt{5}}-\left(\sqrt{5}+3\right)\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}+\frac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}+\left(\sqrt{5}+3\right)-\left(\sqrt{5}+3\right)\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}+0=1\)

b) B=\(\frac{1}{3-\sqrt{x}}+\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{x+9}{x-9}\)

\(=\frac{3+\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{9-x}\)

\(=\frac{3+\sqrt{x}+3\sqrt{x}-x}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}+\frac{x+9}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)

\(=\frac{4\text{​​}\sqrt{x}+12}{\left(3-\sqrt{x}\right)\cdot\left(3+\sqrt{x}\right)}\)

\(=\frac{4\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

\(=\frac{4}{3-\sqrt{x}}\)

\(B>A \Leftrightarrow\frac{4}{3-\sqrt{x}}>1\)

các giá trị của x là \(\left\{x\in R\backslash0\le x\le9\right\}\)

NV
12 tháng 6 2019

a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)

b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)

d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

12 tháng 6 2019

a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)

b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)

c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)

d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)

7 tháng 10 2017

xét VT = \(\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}\)   + \(\frac{\sqrt{a+1}-\sqrt{a+2}}{a+1-a+2}\) + \(\frac{\sqrt{a+2}-\sqrt{a+3}}{a+2-a-3}\) 

         =  \(-\)\(\sqrt{a}+\sqrt{a+1}-\sqrt{a+1}+\sqrt{a+2}-\sqrt{a+2}+\sqrt{a+3}\) 

         =   \(\sqrt{a+3}-\sqrt{a}\)

          =   \(\frac{\sqrt{a+3}^2-\sqrt{a}^2}{\sqrt{a+3}+\sqrt{a}}\)

         =\(\frac{a+3-a}{\sqrt{a+3}+\sqrt{a}}\) =\(\frac{3}{\sqrt{a+3}\sqrt{a}}\) = VP \(\Rightarrow\) đpcm

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\frac{a}{b}+1\geq \frac{5a}{b}\)

\(\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\frac{b}{c}+1\geq \frac{5b}{c}\)

\(\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\frac{c}{a}+1\geq \frac{5c}{a}\)

Cộng theo vế và rút gọn:

\(3\text{VT}\geq 4\text{VP}-3\)

Mà theo BĐT AM-GM: \(\text{VP}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3\)

Do đó:

$3\text{VT}\geq 4\text{VP}-3\geq 3\text{VP}$

$\Rightarrow \text{VT}\geq \text{VP}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

31 tháng 1 2020

Cách khác:

Đặt \(\sqrt[3]{\frac{a}{b}}=x;\sqrt[3]{\frac{b}{c}}=y;\sqrt[3]{\frac{c}{a}}=z\Rightarrow xyz=1,x>0,y>0,z>0\) (mục đích là khử căn)

Cần chứng minh: \(x^4+y^4+z^4\ge x^3+y^3+z^3\Leftrightarrow x^4+y^4+z^4\ge\sqrt[3]{xyz}\left(x^3+y^3+z^3\right)\)

Do \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\). Vì vậy, nó đủ để chứng minh rằng:

\(3\left(x^4+y^4+z^4\right)\ge\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

Đến đây có nhiều hướng giải, sau đây là một vài hướng:

Hướng 1:

Sử dụng BĐT C-S:

\(3\left(x^4+y^4+z^4\right)=3\left(\frac{x^6}{x^2}+\frac{y^6}{y^2}+\frac{z^6}{z^2}\right)\ge\frac{3\left(x^3+y^3+z^3\right)^2}{x^2+y^2+z^2}\)

\(=\frac{3\left(x^3+y^3+z^3\right)\left(\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\right)}{x^2+y^2+z^2}\ge\frac{\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)^2}{x+y+z}}{x^2+y^2+z^2}\)

\(=\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)}{x+y+z}\ge\left(x^3+y^3+z^3\right)\left(x+y+z\right)\)

Hướng 2:(Dùng SOS)

\(VT-VP=\sum\limits_{cyc} (x^2 +xy+y^2)(x-y)^2 \geq 0\)

Hướng 3: (Dùng S-S)

Giả sử \(z=min\left\{x,y,z\right\}\).

\(VT-VP=2\left(x^2+xy+y^2\right)\left(x-y\right)^2+\left(x-z\right)\left(y-z\right)\left(x^2+xz+y^2+yz+2z^2\right)\ge0\)

Đẳng thức xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)

P/s:@Akai Haruma: Em nghĩ hướng này sẽ dễ suy luận hơn cách ghép cặp bằng AM-GM ạ! Cách kia hơi ảo diệu.

29 tháng 7 2019

con cuối là nhân hay cộng hay trừ vậy bn