K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Xét dạng tổng quát :

\(\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\sqrt{\frac{k^2+1}{k^2}+\frac{1}{\left(k+1\right)^2}}\)

\(=\sqrt{\frac{\left(k^2+1\right)\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}}=\sqrt{\frac{k^4+2k^3+3k^2+2k+1}{k^2\left(k+1\right)^2}}\)

\(=\sqrt{\frac{\left(k^2+k+1\right)^2}{k^2\left(k+1\right)^2}}=\frac{k^2+k+1}{k\left(k+1\right)}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

Áp dụng vào bài toán :

\(A=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2010^2}+\frac{1}{2011^2}}\)

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2010}-\frac{1}{2011}\)

\(A=2009-\frac{1}{2011}+\frac{1}{2}\)

p/s: không biết tính có đúng ko nữa, bạn nhớ check lại. Mình nhớ bài này còn có cách khác ngắn hơn nhưng quên rồi :D

29 tháng 6 2016

\(=\frac{2-1}{\sqrt{2}+1}+\frac{3-2}{\sqrt{3}+\sqrt{2}}+\frac{4-3}{\sqrt{4}+\sqrt{3}}+...+\frac{100-99}{\sqrt{100}+\sqrt{99}}.\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}+1}+\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}+\frac{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}{\sqrt{4}+\sqrt{3}}+...\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=10-1=9.\)

NV
14 tháng 9 2020

\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{4-2\sqrt{3}}}=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{2+\sqrt{3}+1}+\frac{2\left(\sqrt{3}+1\right)}{2-\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{3+\sqrt{3}}+\frac{2\left(\sqrt{3}+1\right)}{3-\sqrt{3}}\)

\(=\frac{2\left(\sqrt{3}-1\right)\left(3-\sqrt{3}\right)+2\left(\sqrt{3}+1\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{16\sqrt{3}}{6}=\frac{8\sqrt{3}}{3}\)

24 tháng 9 2015

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{\left(\sqrt{0.75}+\sqrt{0.25}\right)^2}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{\left(\sqrt{0.75}-\sqrt{0.25}\right)^2}}\)

\(=\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{0.75}+\sqrt{0.25}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{0.75}+\sqrt{0.25}}\)

TRỤC CĂN THỨC Ở MẪU TA ĐƯỢC

\(=\frac{9+4\sqrt{3}}{33}+\frac{3-\sqrt{3}}{6}\)

Quy đồng ta được

\(=\frac{17-\sqrt{3}}{22}\)

TICK CHO MÌNH NHA BẠN