Cho tam giác ABC. Gọi D là trung điểm của cạnh AB. Trên AC lấy E sao cho AE=2EC, CD cắt BE tại O. a) So sánh diện tích tam giác AOC và tam giác BOC b) Chứng minh: OE=1/3OB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( giả sử có E nằm trên BC sao cho BD=DE=EC)
S AOB=2 S AOC( vì có chung đấy AO, chiều cao hạ từ B xuống AO gấp 2 lần chiều cao hạ từ C xuống AO)( đoạn so sánh chiều cao, đầu tiên bạn phải chứng minh S ABD=2 S AEC, sau đó, nhận xét, 2 tam giác này có chung cạnh đáy AE, tức là chiều cao hạ từ C xuống AE =1/2 chiều cao hạ từ B xuống AE)
=> S AOB= 18.2=36(cm2)
Bài 1:
Xét ΔADO vuông tại D và ΔAEO vuông tại E có
AO chung
\(\widehat{DAO}=\widehat{EAO}\)
Do đó: ΔADO=ΔAEO
Suy ra: OD=OE
Bài 2:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔBDC và ΔCEB có
BD=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
DO đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=CE
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC