Giúp mình với: Cho HBH ABCD đường thẳng A giao với BD,BC,DC theo thứ tự E,K,G
a)AE^2=EKnhânEG
b)1phầnAE = 1phầnAK + 1phànAG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
Bài 1:
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF
b: Gọi H là trung điểm của KC
Xét ΔAKC cso
O là trung điểm của AC
H là trung điểm của KC
Do đó: OH là đường trung bình
=>OH//AK
hay OH//KE
Xét ΔDOH có
E là trung điểm của DO
EK//OH
Do đó: K là trung điểm của DH
=>DK=KH=HC
hay DK=KC/2
a: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
Suy ra: AE//CF
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt)
=> EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC