K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}+\sqrt{x+3}+\sqrt{8}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\cdot\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)

\(\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

12 tháng 8 2019

\(\Leftrightarrow2\left(x-3\right)+\sqrt{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{x+3}\right)=0\)

\(\Rightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}-\sqrt{x+3}+\sqrt{8}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)

\(\Rightarrow\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

12 tháng 8 2019

\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\left(2\sqrt{x-3}-\sqrt{8}+\sqrt{x+3}+\sqrt{8}\right)=0\)

\(\Leftrightarrow\sqrt{x-3}\cdot\sqrt{x-5}\cdot\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)=0\)

\(\left(\frac{1}{2\sqrt{x-3}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{x+3}}\right)>0\left(\forall x\right)\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

25 tháng 6 2023

a/ x <hoac= -23/4

b/ x=2

a/ có 2xcăn6 > 2x2=4

=> 2 căn 6 > 3+1

<=> 2 căn 6 - 3 >1

b/ có 3 căn 2 > 3 

=> 3 căn 2 - 9 > -6 

=> 6 > 9- 3 căn 2

DT
16 tháng 6 2023

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

23 tháng 10 2017

Bài 1:

a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)

TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)

TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)

b)  \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)

c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)

TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)

Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)

TH2: \(x< -\frac{3}{8}\)

Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)

Bài 2:  Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)

Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)

Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

22 tháng 10 2017

 Bài 1 :

\(2\left(x-\sqrt{12}\right)^2=6\)

\(\Rightarrow\left(x-\sqrt{12}\right)^2=6:2=3\)

\(\Rightarrow x-\sqrt{12}=\sqrt{3}\)

\(\Rightarrow x=3\sqrt{3}\)

29 tháng 6 2021

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)

 

29 tháng 6 2021

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)

mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)

NV
5 tháng 2 2021

\(A=2x\left(6-x\right)\le\dfrac{1}{2}\left(x+6-x\right)^2=18\)

Dấu "=" xảy ra khi \(x=3\)

\(B^2=x^2\left(9-x\right)=-x^3+9x^2\)

\(B^2=-x^3+9x^2-108+108=108-\left(x-6\right)^2\left(x+3\right)\le108\)

\(\Leftrightarrow B\le6\sqrt{3}\)

\(C^2=\left(6-x\right)^2x=32-\left(8-x\right)\left(x-2\right)^2\le32\)

\(\Rightarrow C\le4\sqrt{2}\)

15 tháng 8 2023

\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)

\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)

Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)

a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)

=>x+6<0

=>x<-6

b: ĐKXĐ: (-2)/(6-x)>=0

=>6-x<0

=>x>6

c: ĐKXĐ: (-x+3)/(-6)>=0

=>-x+3<=0

=>-x<=-3

=>x>=3

d: ĐKXĐ: (7x-1)/-9>=0

=>7x-1<=0

=>x<=1/7

e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0

=>x+2>=0

=>x>=-1

f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0

=>x-2>=0

=>x>=2

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )