K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Bài này có thể áp dụng Bunhiacopxki nhưng đang lười nghĩ nên thôi vậy...

\(x+4y=1\Leftrightarrow x=1-4y\)

Khi đó : \(A=\left(1-4y\right)^2+4y^2\)

\(\Leftrightarrow A=16y^2-8y+1+4y^2\)

\(\Leftrightarrow A=20y^2-8y+1\)

\(\Leftrightarrow A=20\left(y^2-\frac{2}{5}y+\frac{1}{20}\right)\)

\(\Leftrightarrow A=20\left(y^2-2\cdot y\cdot\frac{1}{5}+\frac{1}{25}+\frac{1}{100}\right)\)

\(\Leftrightarrow A=20\left[\left(y-\frac{1}{5}\right)^2+\frac{1}{100}\right]\)

\(\Leftrightarrow A=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1-4y\\y=\frac{1}{5}\end{matrix}\right.\Leftrightarrow x=y=\frac{1}{5}\)

27 tháng 7 2023

\(A=\dfrac{1}{x}+\dfrac{1}{4y}=\dfrac{4}{4x}+\dfrac{1}{4y}=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\)

Áp dụng BĐT Cauchy schwart, ta có:

\(A=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\ge\dfrac{\left(2+1\right)^2}{4\left(x+y\right)}=\dfrac{9}{4.2}=\dfrac{9}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{4x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=4y\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, GTNN của \(A=\dfrac{9}{8}\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3},\dfrac{2}{3}\right)\)

28 tháng 7 2023

Áp dụng BĐT Cosi cho 2 cặp số dương là  \(\dfrac{1}{x};\dfrac{9}{16}x\) và \(\dfrac{1}{4y};\dfrac{9}{16}y\) , ta có:

\(\dfrac{1}{x}+\dfrac{9}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{9}{16}x}=2.\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{1}{4y}+\dfrac{9}{16}y\ge2\sqrt{\dfrac{1}{4y}.\dfrac{9}{16}y}=2.\dfrac{3}{8}=\dfrac{3}{4}\)

Cộng vế theo vế ta được: \(\dfrac{1}{x}+\dfrac{1}{4y}+\dfrac{9}{16}\left(x+y\right)\ge\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow A+\dfrac{9}{16}.2\ge\dfrac{9}{4}\Leftrightarrow A\ge\dfrac{9}{4}-\dfrac{9}{8}=\dfrac{9}{8}\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3};\dfrac{2}{3}\right)\)

16 tháng 3 2016

x=2-4y thay vào P ta có: (2-4y)2 + 4y2=20y2-16y + 4 >=4/5

MinP=4/5 khi x=2/5

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

2 tháng 3 2019

13 tháng 3 2016

Bu-nhi-a:

\(\left(1+4\right)\left(x^2+4y^2\right)\ge\cdot\left(x+4y\right)^2=4\)

23 tháng 3 2016

ta co x+4y=2

=>x=2-4y thay vào biểu thức ta có (2-4y)2+4y2=20y2-16y+4=>min=4/5 tại y=2/5

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Lời giải:

Áp dụng BĐT AM-GM:

$12=x^2+4+4y\geq 2\sqrt{4x^2}+4y=4x+4y=4(x+y)$
$\Rightarrow x+y\leq 3$

Tiếp tục áp dụng BĐT AM-GM:

$P=x+y+\frac{10}{x+y}=(x+y)+\frac{9}{x+y}+\frac{1}{x+y}$

$\geq 2\sqrt{(x+y).\frac{9}{x+y}}+\frac{1}{x+y}$
$=6+\frac{1}{x+y}\geq 6+\frac{1}{3}=\frac{19}{3}$ (do $x+y\leq 3$)

Vậy $P_{\min}=\frac{19}{3}$

Giá trị này đạt tại $x=2; y=1$