Giải pt sau :
3sqrt(5x+1) + 3sqrt(4x+4) - 5x - 9 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
ĐKXĐ: x>=4
\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)
=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)
=>\(6\sqrt{x-4}=36\)
=>\(\sqrt{x-4}=6\)
=>x-4=36
=>x=40
\(3\sqrt{x^2-4x+9}=3x-9\)
\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)
\(\Leftrightarrow x=0\left(loại\right)\)
omg tưởng chị lặn k on nữa chứ, thấy chị đổi ảnh bìa tưởng do máy e cập nhập muộn hóa ra chị on lại
Điều kiện: \(x\ge5\).
Phương trình tương đương với:
\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)
\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)
Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
Lời giải:
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$
$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$
$\Leftrightarrow 5\sqrt{x+2}=10$
$\Leftrightarrow \sqrt{x+2}=2$
$\Leftrightarrow x+2=4$
$\Leftrightarrow x=2$ (tm)
\(x^5-5x^4+4x^3+4x^2-5x+1=0\)
\(\left(x^5-x^4\right)-\left(4x^4-4x^3\right)+\left(4x^2-4x\right)-\left(x-1\right)=0\)
\(x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^4-4x^3+4x-1\right)=0\)
\(\left(x-1\right)\left[\left(x^4-1\right)-\left(4x^3-4x\right)\right]=0\)
\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x^2-1\right)\right]=0\)
\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x-1\right)\left(x+1\right)\right]=0\)
\(\left(x-1\right)^2\left(x^3+x^2+x+1-4x^2-4x\right)=0\)
\(\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)
\(\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left(x^2-x+1-3x\right)=0\)
\(\left(x-1\right)^2\left(x+1\right)\left[\left(x^2-2.x.2+2^2\right)-3\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left[\left(x-2\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\left(x-1\right)^2\left(x+1\right)\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)
Đến đây b tự làm tiếp nhé~