K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: 

ĐKXĐ: x>=4

\(5\sqrt{4x-16}-\dfrac{7}{3}\cdot\sqrt{9x-36}=36-3\sqrt{x-4}\)

=>\(5\cdot2\cdot\sqrt{x-4}-\dfrac{7}{3}\cdot3\cdot\sqrt{x-4}+3\sqrt{x-4}=36\)

=>\(6\sqrt{x-4}=36\)

=>\(\sqrt{x-4}=6\)

=>x-4=36

=>x=40

\(3\sqrt{x^2-4x+9}=3x-9\)

\(\Leftrightarrow x^2-4x+9=x^2-6x+9\)

\(\Leftrightarrow x=0\left(loại\right)\)

13 tháng 9 2023

loading...

19 tháng 9 2023

omg tưởng chị lặn k on nữa chứ, thấy chị đổi ảnh bìa tưởng do máy e cập nhập muộn hóa ra chị on lạiyeu

13 tháng 9 2023

Điều kiện: \(x\ge5\).

Phương trình tương đương với:

\(\sqrt{4\left(x-5\right)}+\dfrac{3\sqrt{x-5}}{\sqrt{9}}=3\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}=3\)

\(\Leftrightarrow\sqrt{x-5}=1\Rightarrow x-5=1\Leftrightarrow x=6\left(TM\right)\)

Vậy: Phương trình có tập nghiệm \(S=\left\{6\right\}\).

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

18 tháng 3 2020

a) ( 5x - 4)(4x + 6)=0

<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)

Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)

b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0

<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)

Vậy S = \(\left\{2;3\right\}\)

c) ( 4x - 10 )( 24 + 5x ) = 0

<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)

Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)

d) ( x - 3 )( 2x + 1 ) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)

e) ( 5x - 10 )( 8 - 2x ) = 0

<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy S = \(\left\{2;4\right\}\)

f) ( 9 - 3x )( 15 + 3x ) = 0

<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy S = \(\left\{3;-5\right\}\)

Học tốt nhaaa !

18 tháng 3 2020

Cảm ơn bn

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:
ĐKXĐ: $x\geq -2$

PT $\Leftrightarrow 2\sqrt{x+2}+3\sqrt{4}.\sqrt{x+2}-\sqrt{9}.\sqrt{x+2}=10$

$\Leftrightarrow 2\sqrt{x+2}+6\sqrt{x+2}-3\sqrt{x+2}=10$

$\Leftrightarrow 5\sqrt{x+2}=10$

$\Leftrightarrow \sqrt{x+2}=2$

$\Leftrightarrow x+2=4$

$\Leftrightarrow x=2$ (tm)

13 tháng 12 2018

\(x^5-5x^4+4x^3+4x^2-5x+1=0\)

\(\left(x^5-x^4\right)-\left(4x^4-4x^3\right)+\left(4x^2-4x\right)-\left(x-1\right)=0\)

\(x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(x^4-4x^3+4x-1\right)=0\)

\(\left(x-1\right)\left[\left(x^4-1\right)-\left(4x^3-4x\right)\right]=0\)

\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x^2-1\right)\right]=0\)

\(\left(x-1\right)\left[\left(x-1\right)\left(x^3+x^2+x+1\right)-4x\left(x-1\right)\left(x+1\right)\right]=0\)

\(\left(x-1\right)^2\left(x^3+x^2+x+1-4x^2-4x\right)=0\)

\(\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left(x^2-x+1-3x\right)=0\)

\(\left(x-1\right)^2\left(x+1\right)\left[\left(x^2-2.x.2+2^2\right)-3\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left[\left(x-2\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\left(x-1\right)^2\left(x+1\right)\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)

Đến đây b tự làm tiếp nhé~