K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có n+1 chia hết cho n+1 

=> n - 1 - (n + 1) chia hết cho n+1

=> -2 chia hết cho n+1 

=> n+1 thuộc ƯC( -2) = { +- 1 , +-2 }

n+11-12-2
n0-21-3

vậy n thuộc { 0,-2,1,-3}

26 tháng 1 2019

bai toan kiem tra15 phut truong minh do. the nao co kho ko giup to voi cac ban

26 tháng 1 2019

\(4n+1⋮\left(n-3\right)\)

\(\Rightarrow4.\left(n-3\right)+13⋮\left(n-3\right)\)

\(\Rightarrow13⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow n\in\left\{4;2;16;-10\right\}\)

21 tháng 8 2018

Ta có:(n-3)(n+3)-(n-7)(n-3)             (1)

        =(n-3)(n+3-n+7)

        =10(n-3)

Vậy PT(1) chia hết cho 10

21 tháng 8 2018

\(\left(n-3\right)\left(n+3\right)-\left(n-7\right)\left(n-3\right)=\left(n-3\right)[n+3-\left(n-7\right)]\)

\(=\left(n-3\right)\left(n+3-n+7\right)=\left(n-3\right)\cdot10⋮10\)(ĐPCM)

10 tháng 2 2019

Ta có n+1=3(n+1)=3n+3

suy ra (3n+3)-(3n-2) chia hết cho 3n-2

           3n+3-3n+2 chia hết cho 3n-2

                  1 chia hết cho 3n-2 suy ra 3n-2 thuộc Ư(1)

   suy ra  3n-2 thuộc{-1;1}

              n =1

11 tháng 10 2019

Xét n chẵn thì n(n+13) chia hết cho 2

Xét n lẻ thì n+13 chẵn suy ra n(n+13) chia hết cho 2

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 tháng 1 2018

Giả sử  \(\left(5^n-1\right)⋮4\)

Suy ra \(5^n⋮5\)(phù hợp)

Vậy \(\left(5^n-1\right)⋮4\)

Cách 2

Ta có:

\(5\equiv1\)(mod 4)

Suy ra \(5^n\equiv1\)(mod 4)

Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)

Vậy \(\left(5^n-1\right)⋮4\)